Suppr超能文献

基于联合多模态深度学习的吲哚菁绿血管造影和光学相干断层扫描图像自动分割,用于评估息肉状脉络膜血管病变生物标志物

Joint Multimodal Deep Learning-based Automatic Segmentation of Indocyanine Green Angiography and OCT Images for Assessment of Polypoidal Choroidal Vasculopathy Biomarkers.

作者信息

Loo Jessica, Teo Kelvin Y C, Vyas Chinmayi H, Jordan-Yu Janice Marie N, Juhari Amalia B, Jaffe Glenn J, Cheung Chui Ming Gemmy, Farsiu Sina

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina.

Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore.

出版信息

Ophthalmol Sci. 2023 Feb 24;3(3):100292. doi: 10.1016/j.xops.2023.100292. eCollection 2023 Sep.

Abstract

PURPOSE

To develop a fully-automatic hybrid algorithm to jointly segment and quantify biomarkers of polypoidal choroidal vasculopathy (PCV) on indocyanine green angiography (ICGA) and spectral domain-OCT (SD-OCT) images.

DESIGN

Evaluation of diagnostic test or technology.

PARTICIPANTS

Seventy-two participants with PCV enrolled in clinical studies at Singapore National Eye Center.

METHODS

The dataset consisted of 2-dimensional (2-D) ICGA and 3-dimensional (3-D) SD-OCT images which were spatially registered and manually segmented by clinicians. A deep learning-based hybrid algorithm called PCV-Net was developed for automatic joint segmentation of biomarkers. The PCV-Net consisted of a 2-D segmentation branch for ICGA and 3-D segmentation branch for SD-OCT. We developed fusion attention modules to connect the 2-D and 3-D branches for effective use of the spatial correspondence between the imaging modalities by sharing learned features. We also used self-supervised pretraining and ensembling to further enhance the performance of the algorithm without the need for additional datasets. We compared the proposed PCV-Net to several alternative model variants.

MAIN OUTCOME MEASURES

The PCV-Net was evaluated based on the Dice similarity coefficient (DSC) of the segmentations and the Pearson's correlation and absolute difference of the clinical measurements obtained from the segmentations. Manual grading was used as the gold standard.

RESULTS

The PCV-Net showed good performance compared to manual grading and alternative model variants based on both quantitative and qualitative analyses. Compared to the baseline variant, PCV-Net improved the DSC by 0.04 to 0.43 across the different biomarkers, increased the correlations, and decreased the absolute differences of clinical measurements of interest. Specifically, the largest average (mean ± standard error) DSC improvement was for intraretinal fluid, from 0.02 ± 0.00 (baseline variant) to 0.45 ± 0.06 (PCV-Net). In general, improving trends were observed across the model variants as more technical specifications were added, demonstrating the importance of each aspect of the proposed method.

CONCLUSION

The PCV-Net has the potential to aid clinicians in disease assessment and research to improve clinical understanding and management of PCV.

FINANCIAL DISCLOSURES

Proprietary or commercial disclosure may be found after the references.

摘要

目的

开发一种全自动混合算法,用于在吲哚菁绿血管造影(ICGA)和光谱域光学相干断层扫描(SD-OCT)图像上联合分割和量化息肉状脉络膜血管病变(PCV)的生物标志物。

设计

诊断测试或技术评估。

参与者

72名患有PCV的参与者参加了新加坡国立眼科中心的临床研究。

方法

数据集由二维(2-D)ICGA和三维(3-D)SD-OCT图像组成,这些图像在空间上进行了配准,并由临床医生进行手动分割。开发了一种基于深度学习的混合算法PCV-Net,用于生物标志物的自动联合分割。PCV-Net由一个用于ICGA的二维分割分支和一个用于SD-OCT的三维分割分支组成。我们开发了融合注意力模块来连接二维和三维分支,通过共享学习到的特征有效利用成像模态之间的空间对应关系。我们还使用了自监督预训练和集成方法,无需额外数据集即可进一步提高算法性能。我们将提出的PCV-Net与几种替代模型变体进行了比较。

主要观察指标

基于分割的Dice相似系数(DSC)以及从分割中获得的临床测量值的Pearson相关性和绝对差异对PCV-Net进行评估。手动分级用作金标准。

结果

基于定量和定性分析,与手动分级和替代模型变体相比,PCV-Net表现出良好的性能。与基线变体相比,PCV-Net在不同生物标志物上的DSC提高了0.04至0.43,增加了相关性,并降低了感兴趣的临床测量值的绝对差异。具体而言,视网膜内液的最大平均(均值±标准误差)DSC改善最为显著,从0.02±0.00(基线变体)提高到0.45±0.06(PCV-Net)。总体而言,随着添加更多技术规范,在模型变体中观察到了改善趋势,这表明了所提出方法各方面的重要性。

结论

PCV-Net有潜力帮助临床医生进行疾病评估和研究,以提高对PCV的临床理解和管理。

财务披露

专有或商业披露信息可在参考文献之后找到。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验