Suppr超能文献

冠状动脉 X 射线血管造影分割的人工智能应用:深度学习模型的多中心验证研究。

Coronary X-ray angiography segmentation using Artificial Intelligence: a multicentric validation study of a deep learning model.

机构信息

Structural and Coronary Heart Disease Unit, Faculdade de Medicina, Cardiovascular Center of the University of Lisbon, Universidade de Lisboa (CCUL@RISE), Av Prof. Egas Moniz, Lisboa, 1649-028, Portugal.

Serviço de Cardiologia, Departamento de Coração e Vasos, CHULN Hospital de Santa Maria, Av Prof. Egas Moniz, Lisboa, 1649-028, Portugal.

出版信息

Int J Cardiovasc Imaging. 2023 Jul;39(7):1385-1396. doi: 10.1007/s10554-023-02839-5. Epub 2023 Apr 7.

Abstract

INTRODUCTION

We previously developed an artificial intelligence (AI) model for automatic coronary angiography (CAG) segmentation, using deep learning. To validate this approach, the model was applied to a new dataset and results are reported.

METHODS

Retrospective selection of patients undergoing CAG and percutaneous coronary intervention or invasive physiology assessment over a one month period from four centers. A single frame was selected from images containing a lesion with a 50-99% stenosis (visual estimation). Automatic Quantitative Coronary Analysis (QCA) was performed with a validated software. Images were then segmented by the AI model. Lesion diameters, area overlap [based on true positive (TP) and true negative (TN) pixels] and a global segmentation score (GSS - 0 -100 points) - previously developed and published - were measured.

RESULTS

123 regions of interest from 117 images across 90 patients were included. There were no significant differences between lesion diameter, percentage diameter stenosis and distal border diameter between the original/segmented images. There was a statistically significant albeit minor difference [0,19 mm (0,09-0,28)] regarding proximal border diameter. Overlap accuracy ((TP + TN)/(TP + TN + FP + FN)), sensitivity (TP / (TP + FN)) and Dice Score (2TP / (2TP + FN + FP)) between original/segmented images was 99,9%, 95,1% and 94,8%, respectively. The GSS was 92 (87-96), similar to the previously obtained value in the training dataset.

CONCLUSION

the AI model was capable of accurate CAG segmentation across multiple performance metrics, when applied to a multicentric validation dataset. This paves the way for future research on its clinical uses.

摘要

简介

我们之前开发了一种基于深度学习的自动冠状动脉造影(CAG)分割人工智能(AI)模型。为了验证这种方法,我们将模型应用于一个新的数据集,并报告了结果。

方法

回顾性选择四个中心在一个月内接受 CAG 和经皮冠状动脉介入治疗或侵袭性生理学评估的患者。从包含 50-99%狭窄(视觉估计)病变的图像中选择单个帧。使用经过验证的软件进行自动定量冠状动脉分析(QCA)。然后,由 AI 模型对图像进行分割。测量病变直径、基于真阳性(TP)和真阴性(TN)像素的面积重叠[(基于 TP 和 TN 像素的面积重叠)]和全局分割评分(GSS - 0-100 分)- 先前开发并发表过 - 。

结果

纳入了 90 名患者的 117 张图像的 123 个感兴趣区域。原始/分割图像之间的病变直径、直径狭窄百分比和远端边界直径没有显著差异。近端边界直径存在统计学上的显著差异[0,19mm(0,09-0,28)]。原始/分割图像之间的重叠精度((TP+TN)/(TP+TN+FP+FN))、灵敏度(TP /(TP+FN))和 Dice 评分(2TP /(2TP+FN+FP))分别为 99.9%、95.1%和 94.8%。GSS 为 92(87-96),与在训练数据集中获得的先前值相似。

结论

当应用于多中心验证数据集时,AI 模型能够通过多种性能指标进行准确的 CAG 分割。这为其临床应用的未来研究铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce36/10250252/9412f615e21b/10554_2023_2839_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验