Suppr超能文献

使用人工智能深度学习模型对X射线冠状动脉造影进行分割:对操作者评估冠状动脉狭窄严重程度的视觉影响。

Segmentation of X-ray coronary angiography with an artificial intelligence deep learning model: Impact in operator visual assessment of coronary stenosis severity.

作者信息

Nobre Menezes Miguel, Silva Beatriz, Silva João Lourenço, Rodrigues Tiago, Marques João Silva, Guerreiro Cláudio, Guedes João Pedro, Oliveira-Santos Manuel, Oliveira Arlindo L, Pinto Fausto J

机构信息

Structural and Coronary Heart Disease Unit, Cardiovascular Center of the University of Lisbon, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.

Departamento de Coração e Vasos, Serviço de Cardiologia, CHULN Hospital de Santa Maria, Lisboa, Portugal.

出版信息

Catheter Cardiovasc Interv. 2023 Oct;102(4):631-640. doi: 10.1002/ccd.30805. Epub 2023 Aug 14.

Abstract

BACKGROUND

Visual assessment of the percentage diameter stenosis (%DS ) of lesions is essential in coronary angiography (CAG) interpretation. We have previously developed an artificial intelligence (AI) model capable of accurate CAG segmentation. We aim to compare operators' %DS in angiography versus AI-segmented images.

METHODS

Quantitative coronary analysis (QCA) %DS (%DS ) was previously performed in our published validation dataset. Operators were asked to estimate %DS of lesions in angiography versus AI-segmented images in separate sessions and differences were assessed using angiography %DS as reference.

RESULTS

A total of 123 lesions were included. %DS was significantly higher in both the angiography (77% ± 20% vs. 56% ± 13%, p < 0.001) and segmentation groups (59% ± 20% vs. 56% ± 13%, p < 0.001), with a much smaller absolute %DS difference in the latter. For lesions with %DS of 50%-70% (60% ± 5%), an even higher discrepancy was found (angiography: 83% ± 13% vs. 60% ± 5%, p < 0.001; segmentation: 63% ± 15% vs. 60% ± 5%, p < 0.001). Similar, less pronounced, findings were observed for %DS  < 50% lesions, but not %DS  > 70% lesions. Agreement between %DS /%DS across %DS strata (<50%, 50%-70%, >70%) was approximately twice in the segmentation group (60.4% vs. 30.1%; p < 0.001). %DS inter-operator differences were smaller with segmentation.

CONCLUSION

%DS was much less discrepant with segmentation versus angiography. Overestimation of %DS  < 70% lesions with angiography was especially common. Segmentation may reduce %DS overestimation and thus unwarranted revascularization.

摘要

背景

在冠状动脉造影(CAG)解读中,对病变直径狭窄百分比(%DS)进行视觉评估至关重要。我们之前开发了一种能够准确进行CAG分割的人工智能(AI)模型。我们旨在比较操作人员在血管造影图像与AI分割图像上测得的%DS。

方法

定量冠状动脉分析(QCA)的%DS(%DS)此前已在我们发表的验证数据集中进行。要求操作人员在不同时段分别估计血管造影图像与AI分割图像中病变的%DS,并以血管造影的%DS作为参考评估差异。

结果

共纳入123个病变。血管造影组(77%±20%对56%±13%,p<0.001)和分割组(59%±20%对56%±13%,p<0.001)的%DS均显著更高,后者的绝对%DS差异要小得多。对于%DS为50%-70%(60%±5%)的病变,差异甚至更大(血管造影:83%±13%对60%±5%,p<0.001;分割:63%±15%对60%±5%,p<0.001)。对于%DS<50%的病变,观察到类似但不太明显的结果,但对于%DS>70%的病变则未观察到。在<50%、50%-70%、>70%的%DS分层中,分割组中%DS/%DS之间的一致性约为血管造影组的两倍(60.4%对30.1%;p<0.001)。分割时操作人员之间的%DS差异较小。

结论

与血管造影相比,分割所得的%DS差异要小得多。血管造影对%DS<70%病变的高估尤为常见。分割可能会减少%DS的高估,从而减少不必要的血运重建。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验