IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):12449-12458. doi: 10.1109/TNNLS.2023.3263044. Epub 2024 Sep 3.
Gait synchronization has attracted significant attention in research on assistive lower-limb exoskeletons because it can circumvent conflicting movements and improve the assistance performance. This study proposes an adaptive modular neural control (AMNC) for online gait synchronization and the adaptation of a lower-limb exoskeleton. The AMNC comprises several distributed and interpretable neural modules that interact with each other to effectively exploit neural dynamics and adopt feedback signals to quickly reduce the tracking error, thereby smoothly synchronizing the exoskeleton movement with the user's movement on the fly. Taking state-of-the-art control as the benchmark, the proposed AMNC provides further improvements in the locomotion phase, frequency, and shape adaptation. Accordingly, under the physical interaction between the user and the exoskeleton, the control can reduce the optimized tracking error and unseen interaction torque by up to 80% and 30%, respectively. Accordingly, this study contributes to the advancement of exoskeleton and wearable robotics research in gait assistance for the next generation of personalized healthcare.
步态同步在辅助下肢外骨骼的研究中引起了广泛关注,因为它可以避免冲突运动并提高辅助性能。本研究提出了一种用于在线步态同步和下肢外骨骼适应的自适应模块化神经控制(AMNC)。AMNC 由几个分布式和可解释的神经模块组成,它们相互作用,有效地利用神经动力学,并采用反馈信号快速减小跟踪误差,从而在外骨骼运动和用户运动之间实现平滑同步。以最先进的控制为基准,所提出的 AMNC 在运动阶段、频率和形状适应方面提供了进一步的改进。因此,在用户和外骨骼之间的物理相互作用下,控制可以将优化的跟踪误差和未观察到的交互扭矩分别降低多达 80%和 30%。因此,本研究为下一代个性化医疗保健的步态辅助外骨骼和可穿戴机器人研究做出了贡献。