Suppr超能文献

自适应和非自适应下肢外骨骼用户体验与性能的综合多指标分析

Comprehensive multi-metric analysis of user experience and performance in adaptive and non-adaptive lower-limb exoskeletons.

作者信息

Supapitanon Krongkaew, Patathong Tanyaporn, Akkawutvanich Chaicharn, Srisuchinnawong Arthicha, Ketrungsri Worachit, Manoonpong Poramate, Woratanarat Patarawan, Angsanuntsukh Chanika

机构信息

Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Bangkok, Thailand.

School of Information Science & Technology, Vidyasirimedhi Institute of Science & Technology (VISTEC), Rayong, Thailand.

出版信息

PLoS One. 2025 Jan 9;20(1):e0313593. doi: 10.1371/journal.pone.0313593. eCollection 2025.

Abstract

Among control methods for robotic exoskeletons, biologically inspired control based on central pattern generators (CPGs) offer a promising approach to generate natural and robust walking patterns. Compared to other approaches, like model-based and machine learning-based control, the biologically inspired control provides robustness to perturbations, requires less computational power, and does not need system models or large learning datasets. While it has shown effectiveness, a comprehensive evaluation of its user experience is lacking. Thus, this study addressed this gap by investigating the performance of a state-of-the-art adaptive CPG-based exoskeleton control system (intelligent mode) under a multi-metric analysis (involving three-dimensional gait analysis, muscle activity, oxygen consumption, user comfort, and exoskeleton performance scores) and comparing it to a standard commercial exoskeleton control system (default mode). A cross-over design with randomized allocation in Thai healthy and independently walking adults ensured participants experienced both modes. All participants were assigned into two groups to receive an alternate sequence of walking with the intelligent mode or the default mode of the lower-limb exoskeleton Exo-H3 at high and normal speed. From eight participants, the intelligent mode-driven exoskeleton (adaptive exoskeleton) showed a significantly lower velocity, stride, and step lengths than the default mode-driven exoskeleton (non-adaptive exoskeleton). This setup significantly increased anterior pelvic tilt during mid-swing at normal speed (3.69 ± 1.77 degrees, p = 0.001) and high speed (2.52 ± 1.69 degrees, p = 0.004), hip flexion during stance phase with ankle dorsiflexion, and used less oxygen consumption at high speed (-2.03 ± 2.07 ml/kg/min) when compared to the default one. No significant differences of muscle activity, user comfort and exoskeleton performance scores between the two modes. Further exoskeletal modification in terms of hardware and control is still needed to improve the temporal spatial, kinematics, user comfort, and exoskeleton performance.

摘要

在机器人外骨骼的控制方法中,基于中枢模式发生器(CPG)的生物启发式控制为生成自然且稳健的行走模式提供了一种很有前景的方法。与其他方法(如基于模型的控制和基于机器学习的控制)相比,生物启发式控制对扰动具有鲁棒性,所需计算能力较少,并且不需要系统模型或大量学习数据集。虽然它已显示出有效性,但缺乏对其用户体验的全面评估。因此,本研究通过在多指标分析(包括三维步态分析、肌肉活动、氧气消耗、用户舒适度和外骨骼性能评分)下研究一种先进的基于自适应CPG的外骨骼控制系统(智能模式)的性能,并将其与标准商用外骨骼控制系统(默认模式)进行比较,来填补这一空白。在泰国健康且能独立行走的成年人中采用随机分配的交叉设计,以确保参与者体验两种模式。所有参与者被分为两组,以交替顺序在高速和正常速度下使用下肢外骨骼Exo-H3的智能模式或默认模式行走。在八名参与者中,智能模式驱动的外骨骼(自适应外骨骼)的速度、步幅和步长明显低于默认模式驱动的外骨骼(非自适应外骨骼)。这种设置在正常速度(3.69±1.77度,p = 0.001)和高速(2.52±1.69度,p = 0.004)的摆动中期显著增加了骨盆前倾,在站立期伴随着踝关节背屈时增加了髋关节屈曲,并且与默认模式相比,在高速时(-2.03±2.07毫升/千克/分钟)消耗的氧气更少。两种模式之间在肌肉活动、用户舒适度和外骨骼性能评分方面没有显著差异。仍需要在硬件和控制方面对外骨骼进行进一步改进,以提高时空、运动学、用户舒适度和外骨骼性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30c3/11717227/1a3e4c3925b8/pone.0313593.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验