Suppr超能文献

基于A模式超声通过人工神经网络预测经股截肢者假肢行走运动学

A-Mode Ultrasound-Based Prediction of Transfemoral Amputee Prosthesis Walking Kinematics via an Artificial Neural Network.

作者信息

Mendez Joel, Murray Rosemarie, Gabert Lukas, Fey Nicholas P, Liu Honghai, Lenzi Tommaso

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:1511-1520. doi: 10.1109/TNSRE.2023.3248647. Epub 2023 Mar 8.

Abstract

Lower-limb powered prostheses can provide users with volitional control of ambulation. To accomplish this goal, they require a sensing modality that reliably interprets user intention to move. Surface electromyography (EMG) has been previously proposed to measure muscle excitation and provide volitional control to upper- and lower-limb powered prosthesis users. Unfortunately, EMG suffers from a low signal to noise ratio and crosstalk between neighboring muscles, often limiting the performance of EMG-based controllers. Ultrasound has been shown to have better resolution and specificity than surface EMG. However, this technology has yet to be integrated into lower-limb prostheses. Here we show that A-mode ultrasound sensing can reliably predict the prosthesis walking kinematics of individuals with a transfemoral amputation. Ultrasound features from the residual limb of 9 transfemoral amputee subjects were recorded with A-mode ultrasound during walking with their passive prosthesis. The ultrasound features were mapped to joint kinematics through a regression neural network. Testing of the trained model against untrained kinematics show accurate predictions of knee position, knee velocity, ankle position, and ankle velocity, with a normalized RMSE of 9.0 ± 3.1%, 7.3 ± 1.6%, 8.3 ± 2.3%, and 10.0 ± 2.5% respectively. This ultrasound-based prediction suggests that A-mode ultrasound is a viable sensing technology for recognizing user intent. This study is the first necessary step towards implementation of volitional prosthesis controller based on A-mode ultrasound for individuals with transfemoral amputation.

摘要

下肢动力假肢可以为使用者提供自主控制行走的能力。为实现这一目标,它们需要一种能够可靠地解读使用者运动意图的传感方式。表面肌电图(EMG)此前已被提议用于测量肌肉兴奋程度,并为上肢和下肢动力假肢使用者提供自主控制。不幸的是,EMG存在信噪比低以及相邻肌肉间串扰的问题,这常常限制了基于EMG的控制器的性能。超声已被证明具有比表面EMG更好的分辨率和特异性。然而,这项技术尚未被集成到下肢假肢中。在此我们表明,A模式超声传感能够可靠地预测经股骨截肢个体的假肢行走运动学。在9名经股骨截肢受试者佩戴被动假肢行走期间,用A模式超声记录了残肢的超声特征。通过回归神经网络将超声特征映射到关节运动学上。针对未经训练的运动学对训练好的模型进行测试,结果显示对膝关节位置、膝关节速度、踝关节位置和踝关节速度的预测准确,归一化均方根误差分别为9.0±3.1%、7.3±1.6%、8.3±2.3%和10.0±2.5%。这种基于超声的预测表明,A模式超声是一种用于识别用户意图的可行传感技术。本研究是朝着为经股骨截肢个体实现基于A模式超声的自主假肢控制器迈出的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eff6/10447627/12f11aaa838b/nihms-1881068-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验