Suppr超能文献

自主肌电图控制可实现使用机器人动力膝关节假体进行爬楼梯。

Volitional EMG Control Enables Stair Climbing with a Robotic Powered Knee Prosthesis.

作者信息

Creveling Suzi, Cowan Marissa, Sullivan Liam M, Gabert Lukas, Lenzi Tommaso

机构信息

Department of Mechanical Engineering and the Robotics Center at the University of Utah.

Rocky Mountain Center for Occupational and Environmental Health.

出版信息

Rep U S. 2023 Oct;2023:2152-2157. doi: 10.1109/iros55552.2023.10341615. Epub 2023 Dec 13.

Abstract

Existing controllers for robotic powered prostheses regulate the prosthesis speed, timing, and energy generation using predefined position or torque trajectories. This approach enables climbing stairs step-over-step. However, it does not provide amputees with direct volitional control of the robotic prosthesis, a functionality necessary to restore full mobility to the user. Here we show that proportional electromyographic (EMG) control of the prosthesis knee torque enables volitional control of a powered knee prosthesis during stair climbing. The proposed EMG controller continuously regulates knee torque based on activation of the residual hamstrings, measured using a single EMG electrode located within the socket. The EMG signal is mapped to a desired knee flexion/extension torque based on the prosthesis knee position, the residual limb position, and the interaction with the ground. As a result, the proposed EMG controller enabled an above-knee amputee to climb stairs at different speeds, while carrying additional loads, and even backwards. By enabling direct, volitional control of powered robotic knee prostheses, the proposed EMG controller has the potential to improve amputee mobility in the real world.

摘要

现有的机器人动力假肢控制器使用预定义的位置或扭矩轨迹来调节假肢的速度、时间和能量产生。这种方法能够一步一步地爬楼梯。然而,它并没有为截肢者提供对机器人假肢的直接自主控制,而这是恢复使用者完全行动能力所必需的功能。在此,我们展示了对假肢膝关节扭矩进行比例肌电图(EMG)控制,能够在爬楼梯过程中对动力膝关节假肢进行自主控制。所提出的EMG控制器基于使用位于接受腔内的单个EMG电极测量的残留腘绳肌的激活情况,持续调节膝关节扭矩。基于假肢膝关节位置、残肢位置以及与地面的相互作用,将EMG信号映射为所需的膝关节屈伸扭矩。结果,所提出的EMG控制器使一名膝上截肢者能够以不同速度爬楼梯,同时携带额外负载,甚至向后爬楼梯。通过实现对动力机器人膝关节假肢的直接自主控制,所提出的EMG控制器有可能在现实世界中改善截肢者的行动能力。

相似文献

本文引用的文献

9
Design and clinical implementation of an open-source bionic leg.开源仿生腿的设计与临床实现。
Nat Biomed Eng. 2020 Oct;4(10):941-953. doi: 10.1038/s41551-020-00619-3. Epub 2020 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验