Suppr超能文献

一种用于主动脉4D流动磁共振成像的全自动分析流程

A Fully Automated Analysis Pipeline for 4D Flow MRI in the Aorta.

作者信息

Johnson Ethan M I, Berhane Haben, Weiss Elizabeth, Jarvis Kelly, Sodhi Aparna, Yang Kai, Robinson Joshua D, Rigsby Cynthia K, Allen Bradley D, Markl Michael

机构信息

Department of Radiology, Northwestern University, Chicago, IL 60611, USA.

Department of Medical Imaging, Lurie Children's Hospital, Chicago, IL 60611, USA.

出版信息

Bioengineering (Basel). 2025 Jul 27;12(8):807. doi: 10.3390/bioengineering12080807.

Abstract

Four-dimensional (4D) flow MRI has shown promise for the assessment of aortic hemodynamics. However, data analysis traditionally requires manual and time-consuming human input at several stages. This limits reproducibility and affects analysis workflows, such that large-cohort 4D flow studies are lacking. Here, a fully automated artificial intelligence (AI) 4D flow analysis pipeline was developed and evaluated in a cohort of over 350 subjects. The 4D flow MRI analysis pipeline integrated a series of previously developed and validated deep learning networks, which replaced traditionally manual processing tasks (background-phase correction, noise masking, velocity anti-aliasing, aorta 3D segmentation). Hemodynamic parameters (global aortic pulse wave velocity (PWV), peak velocity, flow energetics) were automatically quantified. The pipeline was evaluated in a heterogeneous single-center cohort of 379 subjects (age = 43.5 ± 18.6 years, 118 female) who underwent 4D flow MRI of the thoracic aorta ( = 147 healthy controls, = 147 patients with a bicuspid aortic valve [BAV], = 10 with mechanical valve prostheses, = 75 pediatric patients with hereditary aortic disease). Pipeline performance with BAV and control data was evaluated by comparing to manual analysis performed by two human observers. A fully automated 4D flow pipeline analysis was successfully performed in 365 of 379 patients (96%). Pipeline-based quantification of aortic hemodynamics was closely correlated with manual analysis results (peak velocity: = 1.00, < 0.001; PWV: = 0.99, < 0.001; flow energetics: = 0.99, < 0.001; overall ≥ 0.99, < 0.001). Bland-Altman analysis showed close agreement for all hemodynamic parameters (bias 1-3%, limits of agreement 6-22%). Notably, limits of agreement between different human observers' quantifications were moderate (4-20%). In addition, the pipeline 4D flow analysis closely reproduced hemodynamic differences between age-matched adult BAV patients and controls (median peak velocity: 1.74 m/s [automated] or 1.76 m/s [manual] BAV vs. 1.31 [auto.] vs. 1.29 [manu.] controls, < 0.005; PWV: 6.4-6.6 m/s all groups, any processing [no significant differences]; kinetic energy: 4.9 μJ [auto.] or 5.0 μJ [manu.] BAV vs. 3.1 μJ [both] control, < 0.005). This study presents a framework for the complete automation of quantitative 4D flow MRI data processing with a failure rate of less than 5%, offering improved measurement reliability in quantitative 4D flow MRI. Future studies are warranted to reduced failure rates and evaluate pipeline performance across multiple centers.

摘要

四维(4D)血流磁共振成像(MRI)已显示出在评估主动脉血流动力学方面的前景。然而,传统的数据分析在几个阶段需要人工手动操作,耗时较长。这限制了可重复性,并影响分析流程,导致缺乏大规模队列的4D血流研究。在此,开发了一种全自动人工智能(AI)4D血流分析流程,并在350多名受试者的队列中进行了评估。4D血流MRI分析流程整合了一系列先前开发并经过验证的深度学习网络,取代了传统的手动处理任务(背景相位校正、噪声屏蔽、速度去混叠、主动脉三维分割)。血流动力学参数(整体主动脉脉搏波速度(PWV)、峰值速度、血流能量学)被自动量化。该流程在一个由379名受试者组成的异质性单中心队列中进行了评估(年龄 = 43.5 ± 18.6岁,女性118名),这些受试者接受了胸主动脉的4D血流MRI检查(147名健康对照者,147名二叶式主动脉瓣(BAV)患者,10名机械瓣膜置换患者,75名患有遗传性主动脉疾病的儿科患者)。通过与两名人类观察者进行的手动分析相比较,评估了该流程对BAV和对照数据的性能。在379名患者中的365名(96%)成功进行了全自动4D血流流程分析。基于流程的主动脉血流动力学量化与手动分析结果密切相关(峰值速度:r = 1.00,P < 0.001;PWV:r = 0.99,P < 0.001;血流能量学:r = 0.99,P < 0.001;总体r ≥ 0.99,P < 0.001)。Bland-Altman分析显示所有血流动力学参数的一致性良好(偏差1 - 3%,一致性界限6 - 22%)。值得注意的是,不同人类观察者量化之间的一致性界限为中等(4 - 20%)。此外,该流程的4D血流分析紧密再现了年龄匹配的成年BAV患者与对照者之间的血流动力学差异(中位峰值速度:1.74 m/s[自动]或1.76 m/s[手动]BAV患者与1.31[自动]与1.29[手动]对照者,P < 0.005;PWV:所有组6.4 - 6.6 m/s,任何处理方式[无显著差异];动能:4.9 μJ[自动]或5.0 μJ[手动]BAV患者与3.1 μJ[两者]对照者,P < 0.005)。本研究提出了一个用于定量4D血流MRI数据处理完全自动化的框架,失败率低于5%,在定量4D血流MRI中提供了更高的测量可靠性。未来的研究有必要降低失败率并评估该流程在多个中心的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f87/12383084/dafef36a4ab3/bioengineering-12-00807-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验