IEEE Trans Biomed Eng. 2023 Aug;70(8):2486-2495. doi: 10.1109/TBME.2023.3250650. Epub 2023 Jul 18.
electrical impedance tomography (EIT) is a promising technique for rapid and continuous bedside monitoring of lung function. Accurate and reliable EIT reconstruction of ventilation requires patient-specific shape information. However, this shape information is often not available and current EIT reconstruction methods typically have limited spatial fidelity. This study sought to develop a statistical shape model (SSM) of the torso and lungs and evaluate whether patient-specific predictions of torso and lung shape could enhance EIT reconstructions in a Bayesian framework.
torso and lung finite element surface meshes were fitted to computed tomography data from 81 participants, and a SSM was generated using principal component analysis and regression analyses. Predicted shapes were implemented in a Bayesian EIT framework and were quantitatively compared to generic reconstruction methods.
Five principal shape modes explained 38% of the cohort variance in lung and torso geometry, and regression analysis yielded nine total anthropometrics and pulmonary function metrics that significantly predicted these shape modes. Incorporation of SSM-derived structural information enhanced the accuracy and reliability of the EIT reconstruction as compared to generic reconstructions, demonstrated by reduced relative error, total variation, and Mahalanobis distance.
As compared to deterministic approaches, Bayesian EIT afforded more reliable quantitative and visual interpretation of the reconstructed ventilation distribution. However, no conclusive improvement of reconstruction performance using patient specific structural information was observed as compared to the mean shape of the SSM.
The presented Bayesian framework builds towards a more accurate and reliable method for ventilation monitoring via EIT.
电阻抗断层成像(EIT)是一种很有前途的技术,可以快速、连续地进行床边肺功能监测。准确、可靠的 EIT 重建需要患者特定的形状信息。然而,这种形状信息通常不可用,目前的 EIT 重建方法通常空间分辨率有限。本研究旨在开发一种躯干和肺部的统计形状模型(SSM),并评估基于贝叶斯框架的患者特定的躯干和肺部形状预测是否可以增强 EIT 重建。
使用主成分分析和回归分析对来自 81 名参与者的计算机断层扫描数据进行拟合,构建 SSM。采用贝叶斯 EIT 框架实施预测形状,并与通用重建方法进行定量比较。
五个主要形状模式解释了肺和躯干几何形状的 38%的组间方差,回归分析得出了九个总人体测量和肺功能指标,这些指标显著预测了这些形状模式。与通用重建相比,SSM 衍生的结构信息的纳入提高了 EIT 重建的准确性和可靠性,表现为相对误差、总变差和马氏距离降低。
与确定性方法相比,贝叶斯 EIT 提供了更可靠的定量和可视化解释重建的通气分布。然而,与 SSM 的平均形状相比,使用患者特定的结构信息并没有观察到重建性能的显著改善。
所提出的贝叶斯框架构建了一种更准确、更可靠的 EIT 通气监测方法。