Suppr超能文献

用于三维可变形模型的高效池化算子

Efficient Pooling Operator for 3D Morphable Models.

作者信息

Zhang Haoliang, Cheng Samuel, Amm Christian El, Kim Jonghoon

出版信息

IEEE Trans Vis Comput Graph. 2024 Jul;30(7):4225-4233. doi: 10.1109/TVCG.2023.3255820. Epub 2024 Jun 27.

Abstract

Learning the latent representation of three-dimensional (3D) morphable geometry is useful for several tasks, such as 3D face tracking, human motion analysis, and character generation and animation. For unstructured surface meshes, previous state-of-the-art methods focus on designing convolution operators and share the same pooling and unpooling operations to encode neighborhood information. Previous models use a mesh pooling operation based on edge contraction, which is based on the euclidean distance of vertices rather than the actual topology. In this study, we investigated whether such a pooling operation can be improved, introducing an improved pooling layer that combines the vertex normals and adjacent faces area. Furthermore, to prevent template overfitting, we increased the receptive field and improved low-resolution projection in the unpooling stage. This increase did not affect processing efficiency because the operation was implemented once on the mesh. We performed experiments to evaluate the proposed method, whose results indicated that the proposed operations outperformed Neural3DMM with 14% lower reconstruction errors and outperformed CoMA by 15% by modifying the pooling and unpooling matrices.

摘要

学习三维(3D)可变形几何的潜在表示对于多项任务很有用,例如3D面部跟踪、人体运动分析以及角色生成与动画制作。对于非结构化表面网格,先前的最先进方法专注于设计卷积算子,并共享相同的池化和反池化操作来编码邻域信息。先前的模型使用基于边收缩的网格池化操作,该操作基于顶点的欧几里得距离而非实际拓扑结构。在本研究中,我们探究了这种池化操作是否可以改进,引入了一种结合顶点法线和相邻面面积的改进池化层。此外,为防止模板过拟合,我们在反池化阶段增加了感受野并改进了低分辨率投影。这种增加并未影响处理效率,因为该操作在网格上仅执行一次。我们进行了实验来评估所提出的方法,结果表明所提出的操作在修改池化和反池化矩阵后,重建误差比Neural3DMM低14%,比CoMA低15%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验