Suppr超能文献

皮质表面的球形U-Net:方法与应用

Spherical U-Net on Cortical Surfaces: Methods and Applications.

作者信息

Zhao Fenqiang, Xia Shunren, Wu Zhengwang, Duan Dingna, Wang Li, Lin Weili, Gilmore John H, Shen Dinggang, Li Gang

机构信息

Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Inf Process Med Imaging. 2019 Jun;11492:855-866. doi: 10.1007/978-3-030-20351-1_67. Epub 2019 May 22.

Abstract

Convolutional Neural Networks (CNNs) have been providing the state-of-the-art performance for learning-related problems involving 2D/3D images in Euclidean space. However, unlike in the Euclidean space, the shapes of many structures in medical imaging have a spherical topology in a manifold space, e.g., brain cortical or subcortical surfaces represented by triangular meshes, with large inter-subject and intra-subject variations in vertex number and local connectivity. Hence, there is no consistent neighborhood definition and thus no straightforward convolution/transposed convolution operations for cortical/subcortical surface data. In this paper, by leveraging the regular and consistent geometric structure of the resampled cortical surface mapped onto the spherical space, we propose a novel convolution filter analogous to the standard convolution on the image grid. Accordingly, we develop corresponding operations for convolution, pooling, and transposed convolution for spherical surface data and thus construct spherical CNNs. Specifically, we propose the Spherical U-Net architecture by replacing all operations in the standard U-Net with their spherical operation counterparts. We then apply the Spherical U-Net to two challenging and neuroscientifically important tasks in infant brains: cortical surface parcellation and cortical attribute map development prediction. Both applications demonstrate the competitive performance in the accuracy, computational efficiency, and effectiveness of our proposed Spherical U-Net, in comparison with the state-of-the-art methods.

摘要

卷积神经网络(CNNs)在涉及欧几里得空间中二维/三维图像的学习相关问题上一直提供着最先进的性能。然而,与欧几里得空间不同,医学成像中许多结构的形状在流形空间中具有球形拓扑结构,例如由三角网格表示的大脑皮质或皮质下表面,在顶点数量和局部连通性方面存在较大的个体间和个体内差异。因此,对于皮质/皮质下表面数据,没有一致的邻域定义,也就没有直接的卷积/转置卷积操作。在本文中,通过利用重新采样到球形空间的皮质表面的规则且一致的几何结构,我们提出了一种类似于图像网格上标准卷积的新型卷积滤波器。相应地,我们为球形表面数据开发了卷积、池化和转置卷积的相应操作,从而构建了球形卷积神经网络。具体而言,我们通过将标准U-Net中的所有操作替换为其球形操作对应物,提出了球形U-Net架构。然后,我们将球形U-Net应用于婴儿大脑中的两个具有挑战性且在神经科学上重要的任务:皮质表面分割和皮质属性图发育预测。与最先进的方法相比,这两个应用都展示了我们提出的球形U-Net在准确性、计算效率和有效性方面的竞争性能。

相似文献

1
Spherical U-Net on Cortical Surfaces: Methods and Applications.皮质表面的球形U-Net:方法与应用
Inf Process Med Imaging. 2019 Jun;11492:855-866. doi: 10.1007/978-3-030-20351-1_67. Epub 2019 May 22.
3
SPHERICAL U-NET FOR INFANT CORTICAL SURFACE PARCELLATION.用于婴儿皮质表面分割的球形U-Net
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:1882-1886. doi: 10.1109/ISBI.2019.8759537. Epub 2019 Jul 11.
5
SPHERICAL TRANSFORMER FOR QUALITY ASSESSMENT OF PEDIATRIC CORTICAL SURFACES.用于小儿皮质表面质量评估的球形变压器
Proc IEEE Int Symp Biomed Imaging. 2022 Mar;2022. doi: 10.1109/isbi52829.2022.9761609. Epub 2022 Apr 26.
6
SPHARM-Net: Spherical Harmonics-Based Convolution for Cortical Parcellation.SPHARM-Net:基于球谐函数的皮层分割卷积。
IEEE Trans Med Imaging. 2022 Oct;41(10):2739-2751. doi: 10.1109/TMI.2022.3168670. Epub 2022 Sep 30.
7
Spherical Transformer on Cortical Surfaces.皮质表面的球面变压器
Mach Learn Med Imaging. 2022 Sep;2022:406-415. doi: 10.1007/978-3-031-21014-3_42. Epub 2022 Dec 16.
8
Cortical Surface Parcellation using Spherical Convolutional Neural Networks.使用球面卷积神经网络进行皮质表面分割
Med Image Comput Comput Assist Interv. 2019 Oct;11766:501-509. doi: 10.1007/978-3-030-32248-9_56. Epub 2019 Oct 10.
9
Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds.用于三维点云高效图卷积的球形内核
IEEE Trans Pattern Anal Mach Intell. 2021 Oct;43(10):3664-3680. doi: 10.1109/TPAMI.2020.2983410. Epub 2021 Sep 2.
10
Geometric Brain Surface Network For Brain Cortical Parcellation.用于脑皮质分区的几何脑表面网络
Graph Learn Med Imaging (2019). 2019;11849:120-129. doi: 10.1007/978-3-030-35817-4_15. Epub 2019 Nov 14.

引用本文的文献

4
ShapeAXI: Shape Analysis Explainability and Interpretability.ShapeAXI:形状分析的可解释性与可解读性。
Proc SPIE Int Soc Opt Eng. 2024 Feb;12931. doi: 10.1117/12.3007053. Epub 2024 Apr 2.
6
Spherical Transformer on Cortical Surfaces.皮质表面的球面变压器
Mach Learn Med Imaging. 2022 Sep;2022:406-415. doi: 10.1007/978-3-031-21014-3_42. Epub 2022 Dec 16.
7
Fast Spherical Mapping of Cortical Surface Meshes Using Deep Unsupervised Learning.使用深度无监督学习对皮质表面网格进行快速球面映射
Med Image Comput Comput Assist Interv. 2022 Sep;13436:163-173. doi: 10.1007/978-3-031-16446-0_16. Epub 2022 Sep 17.
9
Longitudinal Infant Functional Connectivity Prediction via Conditional Intensive Triplet Network.通过条件密集三元组网络进行纵向婴儿功能连接预测
Med Image Comput Comput Assist Interv. 2022 Sep;13438:255-264. doi: 10.1007/978-3-031-16452-1_25. Epub 2022 Sep 16.

本文引用的文献

1
Registration-Free Infant Cortical Surface Parcellation using Deep Convolutional Neural Networks.使用深度卷积神经网络的无配准婴儿皮质表面分区
Med Image Comput Comput Assist Interv. 2018 Sep;11072:672-680. doi: 10.1007/978-3-030-00931-1_77. Epub 2018 Sep 13.
3
Computational neuroanatomy of baby brains: A review.婴儿大脑的计算神经解剖学:综述。
Neuroimage. 2019 Jan 15;185:906-925. doi: 10.1016/j.neuroimage.2018.03.042. Epub 2018 Mar 21.
6
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.SegNet:一种用于图像分割的深度卷积编解码器架构。
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
7
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
10
FreeSurfer.FreeSurfer。
Neuroimage. 2012 Aug 15;62(2):774-81. doi: 10.1016/j.neuroimage.2012.01.021. Epub 2012 Jan 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验