Suppr超能文献

基于拉普拉斯编码与池化的三维网格学习

Learning on 3D Meshes With Laplacian Encoding and Pooling.

作者信息

Qiao Yi-Ling, Gao Lin, Yang Jie, Rosin Paul L, Lai Yu-Kun, Chen Xilin

出版信息

IEEE Trans Vis Comput Graph. 2022 Feb;28(2):1317-1327. doi: 10.1109/TVCG.2020.3014449. Epub 2021 Dec 30.

Abstract

3D models are commonly used in computer vision and graphics. With the wider availability of mesh data, an efficient and intrinsic deep learning approach to processing 3D meshes is in great need. Unlike images, 3D meshes have irregular connectivity, requiring careful design to capture relations in the data. To utilize the topology information while staying robust under different triangulations, we propose to encode mesh connectivity using Laplacian spectral analysis, along with mesh feature aggregation blocks (MFABs) that can split the surface domain into local pooling patches and aggregate global information amongst them. We build a mesh hierarchy from fine to coarse using Laplacian spectral clustering, which is flexible under isometric transformations. Inside the MFABs there are pooling layers to collect local information and multi-layer perceptrons to compute vertex features of increasing complexity. To obtain the relationships among different clusters, we introduce a Correlation Net to compute a correlation matrix, which can aggregate the features globally by matrix multiplication with cluster features. Our network architecture is flexible enough to be used on meshes with different numbers of vertices. We conduct several experiments including shape segmentation and classification, and our method outperforms state-of-the-art algorithms for these tasks on the ShapeNet and COSEG datasets.

摘要

3D模型在计算机视觉和图形学中被广泛使用。随着网格数据的更广泛可得,一种高效且内在的处理3D网格的深度学习方法变得极为必要。与图像不同,3D网格具有不规则的连通性,这需要精心设计以捕捉数据中的关系。为了在不同三角剖分下保持稳健的同时利用拓扑信息,我们建议使用拉普拉斯谱分析对网格连通性进行编码,同时结合网格特征聚合块(MFABs),该块可以将表面区域分割成局部池化补丁并在它们之间聚合全局信息。我们使用拉普拉斯谱聚类从精细到粗糙构建一个网格层次结构,该结构在等距变换下具有灵活性。在MFABs内部有池化层来收集局部信息,以及多层感知器来计算复杂度不断增加的顶点特征。为了获得不同簇之间的关系,我们引入一个相关网络来计算一个相关矩阵,该矩阵可以通过与簇特征进行矩阵乘法来全局聚合特征。我们的网络架构足够灵活,可以用于具有不同顶点数量的网格。我们进行了包括形状分割和分类在内的多项实验,并且我们的方法在ShapeNet和COSEG数据集上针对这些任务优于当前最先进的算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验