Suppr超能文献

利用迁移学习方法整合大规模固定和局部移动测量来估计超本地化的长期空气污染。

Integrating large-scale stationary and local mobile measurements to estimate hyperlocal long-term air pollution using transfer learning methods.

机构信息

Institute for Risk Assessment Sciences, Utrecht University, 3584 CK, Utrecht, Netherlands.

Institute for Risk Assessment Sciences, Utrecht University, 3584 CK, Utrecht, Netherlands.

出版信息

Environ Res. 2023 Jul 1;228:115836. doi: 10.1016/j.envres.2023.115836. Epub 2023 Apr 6.

Abstract

Mobile air quality measurements are collected typically for several seconds per road segment and in specific timeslots (e.g., working hours). These short-term and on-road characteristics of mobile measurements become the ubiquitous shortcomings of applying land use regression (LUR) models to estimate long-term concentrations at residential addresses. This issue was previously found to be mitigated by transferring LUR models to the long-term residential domain using routine long-term measurements in the studied region as the transfer target (local scale). However, long-term measurements are generally sparse in individual cities. For this scenario, we propose an alternative by taking long-term measurements collected over a larger geographical area (global scale) as the transfer target and local mobile measurements as the source (Global2Local model). We empirically tested national, airshed countries (i.e., national plus neighboring countries) and Europe as the global scale in developing Global2Local models to map nitrogen dioxide (NO) concentrations in Amsterdam. The airshed countries scale provided the lowest absolute errors, and the Europe-wide scale had the highest R. Compared to a "global" LUR model (trained exclusively with European-wide long-term measurements), and a local mobile LUR model (using mobile data from Amsterdam only), the Global2Local model significantly reduced the absolute error of the local mobile LUR model (root-mean-square error, 6.9 vs 12.6 μg/m) and improved the percentage explained variances compared to the global model (R, 0.43 vs 0.28, assessed by independent long-term NO measurements in Amsterdam, n = 90). The Global2Local method improves the generalizability of mobile measurements in mapping long-term residential concentrations with a fine spatial resolution, which is preferred in environmental epidemiological studies.

摘要

移动空气质量测量通常在每个道路段采集几秒钟,并在特定时间段(例如工作时间)进行。这些移动测量的短期和道路特征成为将土地利用回归(LUR)模型应用于估计住宅地址长期浓度的普遍缺陷。以前发现,通过将 LUR 模型转移到研究区域的常规长期测量作为转移目标(本地尺度)来减轻这个问题。然而,长期测量在单个城市中通常很稀疏。对于这种情况,我们提出了一种替代方法,即将在更大地理区域(全球尺度)收集的长期测量作为转移目标,并将本地移动测量作为源(Global2Local 模型)。我们在开发用于映射阿姆斯特丹二氧化氮(NO)浓度的 Global2Local 模型时,通过实证测试了国家、大气域国家(即国家加上邻国)和欧洲作为全球尺度。大气域国家尺度提供了最低的绝对误差,而全欧洲尺度则具有最高的 R。与“全球”LUR 模型(仅使用全欧洲范围的长期测量进行训练)和本地移动 LUR 模型(仅使用阿姆斯特丹的移动数据)相比,Global2Local 模型显著降低了本地移动 LUR 模型的绝对误差(均方根误差,6.9 对 12.6μg/m),并提高了与全球模型相比的解释方差百分比(R,0.43 对 0.28,通过阿姆斯特丹独立的长期 NO 测量评估,n=90)。Global2Local 方法提高了移动测量在以精细空间分辨率映射长期住宅浓度的通用性,这在环境流行病学研究中是首选的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验