Faculty of Production Engineering, University of Bremen, Badgasteiner Straße 1, D-28359, Bremen, Germany.
Leibniz Institute for Materials Engineering IWT, Badgasteiner Straße 3, D-28359, Bremen, Germany.
Adv Mater. 2023 Jul;35(28):e2211104. doi: 10.1002/adma.202211104. Epub 2023 May 29.
The development of a novel reactive spray technology based on the well-known gas-phase metal oxide synthesis route provides innumerable opportunities for the production of non-oxide nanoparticles. Among these materials, metal sulfides are expected to have a high impact, especially in the development of electrochemical and photochemical high-surface-area materials. As a proof-of-principle, MnS, CoS, Cu S, ZnS, Ag S, In S , SnS, and Bi S are synthesized in an O -lean and sulfur-rich environment. In addition, the formation of Cu S in a single-droplet combustion experiment is reported. The multiscale approach combining flame sprays with single-droplet combustion is expected to pave the way toward a fundamental understanding of the gas-phase formation of metal sulfides in the future. The knowledge acquired can open the possibility for the development of a next-generation gas-phase technology facilitating the scalable synthesis of functional binary/ternary metal sulfides.
基于著名的气相金属氧化物合成路线,开发出一种新型的反应喷雾技术,为生产非氧化物纳米粒子提供了无数机会。在这些材料中,金属硫化物有望产生重大影响,特别是在电化学和光化学高表面积材料的开发方面。作为原理验证,在贫氧和富硫环境中合成了 MnS、CoS、CuS、ZnS、AgS、In2S3、SnS 和 Bi2S。此外,还报告了在单液滴燃烧实验中形成 CuS 的情况。结合火焰喷雾和单液滴燃烧的多尺度方法有望为未来深入了解金属硫化物在气相中的形成奠定基础。所获得的知识为开发下一代气相技术以促进功能二元/三元金属硫化物的可扩展合成提供了可能性。