Suppr超能文献

社区和数据驱动的 homelessness 预防和服务提供:实现公平优化。

Community- and data-driven homelessness prevention and service delivery: optimizing for equity.

机构信息

Division of Data and Computational Sciences, Washington University in St. Louis, St. Louis, Missouri, USA.

Department of Computer Science, George Mason University, Fairfax, Virginia, USA.

出版信息

J Am Med Inform Assoc. 2023 May 19;30(6):1032-1041. doi: 10.1093/jamia/ocad052.

Abstract

OBJECTIVE

The study tests a community- and data-driven approach to homelessness prevention. Federal policies call for efficient and equitable local responses to homelessness. However, the overwhelming demand for limited homeless assistance is challenging without empirically supported decision-making tools and raises questions of whom to serve with scarce resources.

MATERIALS AND METHODS

System-wide administrative records capture the delivery of an array of homeless services (prevention, shelter, short-term housing, supportive housing) and whether households reenter the system within 2 years. Counterfactual machine learning identifies which service most likely prevents reentry for each household. Based on community input, predictions are aggregated for subpopulations of interest (race/ethnicity, gender, families, youth, and health conditions) to generate transparent prioritization rules for whom to serve first. Simulations of households entering the system during the study period evaluate whether reallocating services based on prioritization rules compared with services-as-usual.

RESULTS

Homelessness prevention benefited households who could access it, while differential effects exist for homeless households that partially align with community interests. Households with comorbid health conditions avoid homelessness most when provided longer-term supportive housing, and families with children fare best in short-term rentals. No additional differential effects existed for intersectional subgroups. Prioritization rules reduce community-wide homelessness in simulations. Moreover, prioritization mitigated observed reentry disparities for female and unaccompanied youth without excluding Black and families with children.

DISCUSSION

Leveraging administrative records with machine learning supplements local decision-making and enables ongoing evaluation of data- and equity-driven homeless services.

CONCLUSIONS

Community- and data-driven prioritization rules more equitably target scarce homeless resources.

摘要

目的

本研究检验了一种基于社区和数据驱动的预防 homelessness 的方法。联邦政策呼吁对 homelessness 做出高效和公平的地方响应。然而,在没有经验支持的决策工具的情况下,对有限 homeless 援助的巨大需求是具有挑战性的,这引发了关于如何在资源稀缺的情况下为谁提供服务的问题。

材料和方法

系统范围的行政记录捕捉了一系列 homeless 服务(预防、庇护、短期住房、支持性住房)的提供情况,以及家庭是否在 2 年内重新进入系统。反事实机器学习确定每个家庭最有可能通过哪种服务来防止重新进入。基于社区的投入,对感兴趣的亚人群(种族/族裔、性别、家庭、青年和健康状况)进行预测汇总,为优先服务谁生成透明的优先级规则。在研究期间进入系统的家庭的模拟评估了基于优先级规则重新分配服务与常规服务相比的效果。

结果

预防 homelessness 使能够获得服务的家庭受益,而 homeless 家庭的不同影响部分与社区利益一致。患有共病的家庭获得长期支持性住房时最能避免 homelessness,有孩子的家庭在短期租赁中表现最好。交叉亚人群不存在额外的差异影响。优先级规则在模拟中减少了社区范围内的 homelessness。此外,优先级规则在不排除黑人家庭和有孩子的家庭的情况下,减轻了女性和无陪伴青年观察到的重新进入差异。

讨论

利用机器学习和行政记录补充了地方决策,并使数据和公平驱动的 homeless 服务的持续评估成为可能。

结论

基于社区和数据的优先级规则更公平地针对稀缺的 homeless 资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b71/10198533/4646f66f48a1/ocad052f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验