Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India.
Division of Biology, Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh 517641, India.
Biotechnol Adv. 2023 Sep;66:108149. doi: 10.1016/j.biotechadv.2023.108149. Epub 2023 Apr 6.
Glycosylation-mediated post-translational modification is critical for regulating many fundamental processes like cell division, differentiation, immune response, and cell-to-cell interaction. Alterations in the N-linked or O-linked glycosylation pattern of regulatory proteins like transcription factors or cellular receptors lead to many diseases, including cancer. These alterations give rise to micro- and macro-heterogeneity in tumor cells. Here, we review the role of O- and N-linked glycosylation and its regulatory function in autoimmunity and aberrant glycosylation in cancer. The change in cellular glycome could result from a change in the expression of glycosidases or glycosyltransferases like N-acetyl-glucosaminyl transferase V, FUT8, ST6Gal-I, DPAGT1, etc., impact the glycosylation of target proteins leading to transformation. Moreover, the mutations in glycogenes affect glycosylation patterns on immune cells leading to other related manifestations like pro- or anti-inflammatory effects. In recent years, understanding the glycome to cancer indicates that it can be utilized for both diagnosis/prognosis as well as immunotherapy. Studies involving mass spectrometry of proteome, site- and structure-specific glycoproteomics, or transcriptomics/genomics of patient samples and cancer models revealed the importance of glycosylation homeostasis in cancer biology. The development of emerging technologies, such as the lectin microarray, has facilitated research on the structure and function of glycans and glycosylation. Newly developed devices allow for high-throughput, high-speed, and precise research on aberrant glycosylation. This paper also discusses emerging technologies and clinical applications of glycosylation.
糖基化介导的翻译后修饰对于调节许多基本过程至关重要,如细胞分裂、分化、免疫反应和细胞间相互作用。调节蛋白(如转录因子或细胞受体)的 N 连接或 O 连接糖基化模式的改变导致许多疾病,包括癌症。这些改变导致肿瘤细胞的微观和宏观异质性。在这里,我们综述了 O 连接和 N 连接糖基化及其在自身免疫和癌症中异常糖基化中的调节功能。细胞糖组的变化可能是由于糖苷酶或糖基转移酶(如 N-乙酰氨基葡萄糖转移酶 V、FUT8、ST6Gal-I、DPAGT1 等)的表达变化引起的,影响靶蛋白的糖基化,导致转化。此外,糖基因的突变会影响免疫细胞上的糖基化模式,导致其他相关表现,如促炎或抗炎作用。近年来,对糖组学与癌症的理解表明,它可用于诊断/预后以及免疫治疗。涉及蛋白质组质荷比质谱、位点和结构特异性糖蛋白质组学或患者样本和癌症模型的转录组学/基因组学的研究揭示了糖基化动态平衡在癌症生物学中的重要性。新兴技术的发展,如凝集素微阵列,促进了对聚糖和糖基化结构和功能的研究。新开发的设备允许对异常糖基化进行高通量、高速和精确的研究。本文还讨论了糖基化的新兴技术和临床应用。