Suppr超能文献

视觉中的扩散模型:综述

Diffusion Models in Vision: A Survey.

作者信息

Croitoru Florinel-Alin, Hondru Vlad, Ionescu Radu Tudor, Shah Mubarak

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Sep;45(9):10850-10869. doi: 10.1109/TPAMI.2023.3261988. Epub 2023 Aug 7.

Abstract

Denoising diffusion models represent a recent emerging topic in computer vision, demonstrating remarkable results in the area of generative modeling. A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage. In the forward diffusion stage, the input data is gradually perturbed over several steps by adding Gaussian noise. In the reverse stage, a model is tasked at recovering the original input data by learning to gradually reverse the diffusion process, step by step. Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens, i.e., low speeds due to the high number of steps involved during sampling. In this survey, we provide a comprehensive review of articles on denoising diffusion models applied in vision, comprising both theoretical and practical contributions in the field. First, we identify and present three generic diffusion modeling frameworks, which are based on denoising diffusion probabilistic models, noise conditioned score networks, and stochastic differential equations. We further discuss the relations between diffusion models and other deep generative models, including variational auto-encoders, generative adversarial networks, energy-based models, autoregressive models and normalizing flows. Then, we introduce a multi-perspective categorization of diffusion models applied in computer vision. Finally, we illustrate the current limitations of diffusion models and envision some interesting directions for future research.

摘要

去噪扩散模型是计算机视觉中一个新兴的热门话题,在生成建模领域展现出了卓越的成果。扩散模型是一种深度生成模型,它基于两个阶段,即前向扩散阶段和反向扩散阶段。在前向扩散阶段,输入数据通过添加高斯噪声在多个步骤中逐渐受到干扰。在反向阶段,一个模型的任务是通过学习逐步逆转扩散过程来恢复原始输入数据。尽管扩散模型存在已知的计算负担,即由于采样过程中涉及的步骤数量众多而导致速度较慢,但因其生成样本的质量和多样性而广受赞誉。在本次综述中,我们对应用于视觉领域的去噪扩散模型的文章进行了全面回顾,涵盖了该领域的理论和实践贡献。首先,我们识别并介绍了三种通用的扩散建模框架,它们分别基于去噪扩散概率模型、噪声条件得分网络和随机微分方程。我们进一步讨论了扩散模型与其他深度生成模型之间的关系,包括变分自编码器、生成对抗网络、基于能量的模型、自回归模型和归一化流。然后,我们介绍了应用于计算机视觉的扩散模型的多视角分类。最后,我们阐述了扩散模型当前的局限性,并展望了一些有趣的未来研究方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验