Suppr超能文献

一种用于三维低剂量和少视图心脏单光子发射计算机断层扫描成像的通用扩散框架。

A generalizable diffusion framework for 3D low-dose and few-view cardiac SPECT imaging.

作者信息

Xie Huidong, Gan Weijie, Ji Wei, Chen Xiongchao, Alashi Alaa, Thorn Stephanie L, Zhou Bo, Liu Qiong, Xia Menghua, Guo Xueqi, Liu Yi-Hwa, An Hongyu, Kamilov Ulugbek S, Wang Ge, Sinusas Albert J, Liu Chi

机构信息

Department of Biomedical Engineering, Yale University, United States of America.

Department of Computer Science & Engineering, Washington University in St. Louis, United States of America.

出版信息

Med Image Anal. 2025 Jul 30;106:103729. doi: 10.1016/j.media.2025.103729.

Abstract

Myocardial perfusion imaging using SPECT is widely utilized to diagnose coronary artery diseases, but image quality can be negatively affected in low-dose and few-view acquisition settings. Although various deep learning methods have been introduced to improve image quality from low-dose or few-view SPECT data, previous approaches often fail to generalize across different acquisition settings, limiting realistic applicability. This work introduced DiffSPECT-3D, a diffusion framework for 3D cardiac SPECT imaging that effectively adapts to different acquisition settings without requiring further network re-training or fine-tuning. Using both image and projection data, a consistency strategy is proposed to ensure that diffusion sampling at each step aligns with the low-dose/few-view projection measurements, the image data, and the scanner geometry, thus enabling generalization to different low-dose/few-view settings. Incorporating anatomical spatial information from CT and total variation constraint, we proposed a 2.5D conditional strategy to allow DiffSPECT-3D to observe 3D contextual information from the entire image volume, addressing the 3D memory/computational issues in diffusion model. We extensively evaluated the proposed method on 1,325 clinical Tc tetrofosmin stress/rest studies from 795 patients. Each study was reconstructed into 5 different low-count levels and 5 different projection few-view levels for model evaluations, ranging from 1% to 50% and from 1 view to 9 view, respectively. Validated against cardiac catheterization results and diagnostic review from nuclear cardiologists, the presented results show the potential to achieve low-dose and few-view SPECT imaging without compromising clinical performance. Additionally, DiffSPECT-3D could be directly applied to full-dose SPECT images to further improve image quality, especially in a low-dose stress-first cardiac SPECT imaging protocol.

摘要

使用单光子发射计算机断层扫描(SPECT)的心肌灌注成像被广泛用于诊断冠状动脉疾病,但在低剂量和少视图采集设置下,图像质量可能会受到负面影响。尽管已经引入了各种深度学习方法来从低剂量或少视图SPECT数据中提高图像质量,但以前的方法往往无法在不同的采集设置中通用,限制了实际适用性。这项工作引入了DiffSPECT-3D,一种用于3D心脏SPECT成像的扩散框架,它可以有效适应不同的采集设置,而无需进一步的网络重新训练或微调。利用图像和投影数据,提出了一种一致性策略,以确保在每个步骤的扩散采样与低剂量/少视图投影测量、图像数据和扫描仪几何形状对齐,从而能够推广到不同的低剂量/少视图设置。结合来自CT的解剖空间信息和总变差约束,我们提出了一种2.5D条件策略,使DiffSPECT-3D能够从整个图像体积中观察3D上下文信息,解决扩散模型中的3D内存/计算问题。我们在来自795名患者的1325例临床锝替曲膦酸盐负荷/静息研究中广泛评估了所提出的方法。每项研究被重建为5种不同的低计数水平和5种不同的投影少视图水平用于模型评估,分别从1%到50%以及从1视图到9视图。根据心脏导管检查结果和核心脏病专家的诊断审查进行验证,所呈现的结果表明在不影响临床性能的情况下实现低剂量和少视图SPECT成像的潜力。此外,DiffSPECT-3D可以直接应用于全剂量SPECT图像以进一步提高图像质量,特别是在低剂量负荷优先的心脏SPECT成像协议中。

相似文献

本文引用的文献

3
Unified Noise-aware Network for Low-count PET Denoising with Varying Count Levels.用于不同计数水平低计数PET去噪的统一噪声感知网络
IEEE Trans Radiat Plasma Med Sci. 2024 Apr;8(4):366-378. doi: 10.1109/trpms.2023.3334105. Epub 2023 Nov 20.
6
PET image denoising based on denoising diffusion probabilistic model.基于去噪扩散概率模型的 PET 图像去噪。
Eur J Nucl Med Mol Imaging. 2024 Jan;51(2):358-368. doi: 10.1007/s00259-023-06417-8. Epub 2023 Oct 3.
9
Adaptive diffusion priors for accelerated MRI reconstruction.自适应扩散先验在加速 MRI 重建中的应用。
Med Image Anal. 2023 Aug;88:102872. doi: 10.1016/j.media.2023.102872. Epub 2023 Jun 20.
10
Diffusion models in medical imaging: A comprehensive survey.扩散模型在医学成像中的应用:全面综述。
Med Image Anal. 2023 Aug;88:102846. doi: 10.1016/j.media.2023.102846. Epub 2023 May 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验