Suppr超能文献

基于 4D 深度学习的实时运动分析用于超声引导放射治疗。

Real-Time Motion Analysis With 4D Deep Learning for Ultrasound-Guided Radiotherapy.

出版信息

IEEE Trans Biomed Eng. 2023 Sep;70(9):2690-2699. doi: 10.1109/TBME.2023.3262422. Epub 2023 Aug 30.

Abstract

Motion compensation in radiation therapy is a challenging scenario that requires estimating and forecasting motion of tissue structures to deliver the target dose. Ultrasound offers direct imaging of tissue in real-time and is considered for image guidance in radiation therapy. Recently, fast volumetric ultrasound has gained traction, but motion analysis with such high-dimensional data remains difficult. While deep learning could bring many advantages, such as fast data processing and high performance, it remains unclear how to process sequences of hundreds of image volumes efficiently and effectively. We present a 4D deep learning approach for real-time motion estimation and forecasting using long-term 4D ultrasound data. Using motion traces acquired during radiation therapy combined with various tissue types, our results demonstrate that long-term motion estimation can be performed markerless with a tracking error of 0.35±0.2 mm and with an inference time of less than 5 ms. Also, we demonstrate forecasting directly from the image data up to 900 ms into the future. Overall, our findings highlight that 4D deep learning is a promising approach for motion analysis during radiotherapy.

摘要

放射治疗中的运动补偿是一个具有挑战性的场景,需要估计和预测组织结构的运动,以输送目标剂量。超声提供了组织的实时直接成像,并被认为是放射治疗中的图像引导。最近,快速容积超声已经引起了关注,但对于这种高维数据的运动分析仍然很困难。虽然深度学习可以带来许多优势,如快速数据处理和高性能,但如何有效地处理数百个图像体积的序列仍然不清楚。我们提出了一种基于长期 4D 超声数据的实时运动估计和预测的 4D 深度学习方法。使用放射治疗期间获得的运动轨迹和各种组织类型,我们的结果表明,可以无标记地进行长期运动估计,跟踪误差为 0.35±0.2 毫米,推断时间小于 5 毫秒。此外,我们还直接从图像数据中预测未来 900 毫秒的运动。总的来说,我们的研究结果表明,4D 深度学习是放射治疗期间运动分析的一种很有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验