Wen Jie, Liu Chengliang, Deng Shijie, Liu Yicheng, Fei Lunke, Yan Ke, Xu Yong
IEEE Trans Neural Netw Learn Syst. 2024 Aug;35(8):11396-11408. doi: 10.1109/TNNLS.2023.3260349. Epub 2024 Aug 5.
View missing and label missing are two challenging problems in the applications of multi-view multi-label classification scenery. In the past years, many efforts have been made to address the incomplete multi-view learning or incomplete multi-label learning problem. However, few works can simultaneously handle the challenging case with both the incomplete issues. In this article, we propose a new incomplete multi-view multi-label learning network to address this challenging issue. The proposed method is composed of four major parts: view-specific deep feature extraction network, weighted representation fusion module, classification module, and view-specific deep decoder network. By, respectively, integrating the view missing information and label missing information into the weighted fusion module and classification module, the proposed method can effectively reduce the negative influence caused by two such incomplete issues and sufficiently explore the available data and label information to obtain the most discriminative feature extractor and classifier. Furthermore, our method can be trained in both supervised and semi-supervised manners, which has important implications for flexible deployment. Experimental results on five benchmarks in supervised and semi-supervised cases demonstrate that the proposed method can greatly enhance the classification performance on the difficult incomplete multi-view multi-label classification tasks with missing labels and missing views.
视图缺失和标签缺失是多视图多标签分类场景应用中的两个具有挑战性的问题。在过去几年中,人们为解决不完整的多视图学习或不完整的多标签学习问题付出了很多努力。然而,很少有工作能够同时处理这两个不完整问题的具有挑战性的情况。在本文中,我们提出了一种新的不完整多视图多标签学习网络来解决这个具有挑战性的问题。所提出的方法由四个主要部分组成:视图特定的深度特征提取网络、加权表示融合模块、分类模块和视图特定的深度解码器网络。通过分别将视图缺失信息和标签缺失信息整合到加权融合模块和分类模块中,所提出的方法可以有效减少这两个不完整问题所带来的负面影响,并充分挖掘可用的数据和标签信息,以获得最具判别力的特征提取器和分类器。此外,我们的方法可以在监督和半监督方式下进行训练,这对于灵活部署具有重要意义。在监督和半监督情况下的五个基准测试上的实验结果表明,所提出的方法可以在具有缺失标签和缺失视图的困难的不完整多视图多标签分类任务上大大提高分类性能。