Suppr超能文献

基于标签语义引导对比学习的深度对偶不完全多视图多标签分类。

Deep dual incomplete multi-view multi-label classification via label semantic-guided contrastive learning.

机构信息

College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China.

Shenzhen Key Laboratory of Visual Object Detection and Recognition, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China.

出版信息

Neural Netw. 2024 Dec;180:106674. doi: 10.1016/j.neunet.2024.106674. Epub 2024 Aug 30.

Abstract

Multi-view multi-label learning (MVML) aims to train a model that can explore the multi-view information of the input sample to obtain its accurate predictions of multiple labels. Unfortunately, a majority of existing MVML methods are based on the assumption of data completeness, making them useless in practical applications with partially missing views or some uncertain labels. Recently, many approaches have been proposed for incomplete data, but few of them can handle the case of both missing views and labels. Moreover, these few existing works commonly ignore potentially valuable information about unknown labels or do not sufficiently explore latent label information. Therefore, in this paper, we propose a label semantic-guided contrastive learning method named LSGC for the dual incomplete multi-view multi-label classification problem. Concretely, LSGC employs deep neural networks to extract high-level features of samples. Inspired by the observation of exploiting label correlations to improve the feature discriminability, we introduce a graph convolutional network to effectively capture label semantics. Furthermore, we introduce a new sample-label contrastive loss to explore the label semantic information and enhance the feature representation learning. For missing labels, we adopt a pseudo-label filling strategy and develop a weighting mechanism to explore the confidently recovered label information. We validate the framework on five standard datasets and the experimental results show that our method achieves superior performance in comparison with the state-of-the-art methods.

摘要

多视图多标签学习(MVML)旨在训练一个模型,该模型可以探索输入样本的多视图信息,从而对多个标签进行准确预测。然而,大多数现有的 MVML 方法都基于数据完整的假设,这使得它们在存在部分缺失视图或一些不确定标签的实际应用中毫无用处。最近,已经提出了许多针对不完整数据的方法,但很少有方法可以处理缺失视图和标签的情况。此外,这些少数现有的工作通常忽略了未知标签的潜在有价值信息,或者没有充分探索潜在的标签信息。因此,在本文中,我们提出了一种名为 LSGC 的用于双重不完整多视图多标签分类问题的标签语义引导对比学习方法。具体来说,LSGC 使用深度神经网络提取样本的高级特征。受利用标签相关性来提高特征可辨别性的观察启发,我们引入了一个图卷积网络来有效地捕获标签语义。此外,我们引入了一个新的样本-标签对比损失来探索标签语义信息并增强特征表示学习。对于缺失的标签,我们采用伪标签填充策略并开发加权机制来探索自信地恢复的标签信息。我们在五个标准数据集上验证了该框架,实验结果表明,与最先进的方法相比,我们的方法具有优越的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验