Suppr超能文献

用于处理带有不完整标签的多视图多标签分类的标签恢复与标签相关性协同学习

Label recovery and label correlation co-learning for multi-view multi-label classification with incomplete labels.

作者信息

He Zhi-Fen, Zhang Chun-Hua, Liu Bin, Li Bo

机构信息

School of Mathematics and Information Science, Nanchang Hangkong University, Nanchang, 330063 China.

Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition, Nanchang Hangkong University, Nanchang, 330063 China.

出版信息

Appl Intell (Dordr). 2023;53(8):9444-9462. doi: 10.1007/s10489-022-03945-y. Epub 2022 Aug 9.

Abstract

Multi-view multi-label learning (MVML) is an important paradigm in machine learning, where each instance is represented by several heterogeneous views and associated with a set of class labels. However, label incompleteness and the ignorance of both the relationships among views and the correlations among labels will cause performance degradation in MVML algorithms. Accordingly, a novel method, - - (MV2ML), is proposed in this paper. First, a label correlation-guided binary classifier kernel-based is constructed for each label. Then, we adopt the multi-kernel fusion method to effectively fuse the multi-view data by utilizing the individual and complementary information among multiple views and distinguishing the contribution difference of each view. Finally, we propose a collaborative learning strategy that considers the exploitation of asymmetric label correlations, the fusion of multi-view data, the recovery of incomplete label matrix and the construction of the classification model simultaneously. In such a way, the recovery of incomplete label matrix and the learning of label correlations interact and boost each other to guide the training of classifiers. Extensive experimental results demonstrate that MV2ML achieves highly competitive classification performance against state-of-the-art approaches on various real-world multi-view multi-label datasets in terms of six evaluation criteria.

摘要

多视图多标签学习(MVML)是机器学习中的一个重要范式,其中每个实例由多个异构视图表示,并与一组类别标签相关联。然而,标签不完整性以及对视图之间关系和标签之间相关性的忽视会导致MVML算法的性能下降。因此,本文提出了一种新颖的方法——多视图多标签多任务学习(MV2ML)。首先,为每个标签构建一个基于标签相关性引导的二分类器内核。然后,我们采用多核融合方法,通过利用多个视图之间的个体和互补信息并区分每个视图的贡献差异,有效地融合多视图数据。最后,我们提出一种协同学习策略,该策略同时考虑利用不对称标签相关性、融合多视图数据、恢复不完整标签矩阵以及构建分类模型。通过这种方式,不完整标签矩阵的恢复和标签相关性的学习相互作用并相互促进,以指导分类器的训练。大量实验结果表明,在六个评估标准方面,MV2ML在各种真实世界的多视图多标签数据集上与最先进的方法相比具有极具竞争力的分类性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a2b/9360669/5045c8182161/10489_2022_3945_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验