Suppr超能文献

用于晶体系统测定的新型晶体学机器学习平台。

: a new crystallographic machine learning platform for crystal system determination.

作者信息

Corriero Nicola, Rizzi Rosanna, Settembre Gaetano, Del Buono Nicoletta, Diacono Domenico

机构信息

Institute of Crystallography, CNR, Bari, Italy.

Department of Mathematics, University of Bari Aldo Moro, Bari, Italy.

出版信息

J Appl Crystallogr. 2023 Feb 28;56(Pt 2):409-419. doi: 10.1107/S1600576723000596. eCollection 2023 Apr 1.

Abstract

Determination of the crystal system and space group is the first step of crystal structure analysis. Often this turns out to be a bottleneck in the material characterization workflow for polycrystalline compounds, thus requiring manual interventions. This work proposes a new machine-learning (ML)-based web platform, (Crystallography MachinE LeArning), for crystal systems classification. Two different ML models, random forest and convolutional neural network, are available through the platform, as well as the extremely randomized trees algorithm, available from the literature. The ML models learned from simulated powder X-ray diffraction patterns of more than 280 000 published crystal structures from organic, inorganic and metal-organic compounds and minerals which were collected from the POW_COD database. A crystal system classification accuracy of 70%, which improved to more than 90% when considering the Top-2 classification accuracy, was obtained in tenfold cross-validation. The validity of the trained models has also been tested against independent experimental data of published compounds. The classification options in the platform are powerful, easy to use and supported by a user-friendly graphic interface. They can be extended over time with contributions from the community. The tool is freely available at https://www.ba.ic.cnr.it/softwareic/crystalmela/ following registration.

摘要

确定晶体系统和空间群是晶体结构分析的第一步。对于多晶化合物,这往往成为材料表征工作流程中的一个瓶颈,因此需要人工干预。这项工作提出了一个基于机器学习(ML)的新网络平台(晶体学机器学习平台,Crystallography MachinE LeArning),用于晶体系统分类。该平台提供了两种不同的机器学习模型,即随机森林和卷积神经网络,以及文献中可用的极端随机树算法。这些机器学习模型是从超过280000个已发表晶体结构的模拟粉末X射线衍射图谱中学习得到的,这些晶体结构来自有机、无机和金属有机化合物以及从POW_COD数据库收集的矿物。在十折交叉验证中,晶体系统分类准确率达到70%,若考虑前两名分类准确率,则提高到90%以上。训练模型的有效性也已针对已发表化合物的独立实验数据进行了测试。该平台的分类选项功能强大、易于使用,并由用户友好的图形界面提供支持。随着社区的贡献,它们可以随着时间的推移而扩展。注册后可在https://www.ba.ic.cnr.it/softwareic/crystalmela/免费获取该工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2096/10077848/0b2304de92de/j-56-00409-fig1.jpg

相似文献

1
: a new crystallographic machine learning platform for crystal system determination.
J Appl Crystallogr. 2023 Feb 28;56(Pt 2):409-419. doi: 10.1107/S1600576723000596. eCollection 2023 Apr 1.
2
ALPACA: A machine Learning Platform for Affinity and selectivity profiling of CAnnabinoids receptors modulators.
Comput Biol Med. 2023 Sep;164:107314. doi: 10.1016/j.compbiomed.2023.107314. Epub 2023 Aug 7.
3
Classification of crystal structure using a convolutional neural network.
IUCrJ. 2017 Jun 13;4(Pt 4):486-494. doi: 10.1107/S205225251700714X. eCollection 2017 Jul 1.
5
AMALPHI: A Machine Learning Platform for Predicting Drug-Induced PhospholIpidosis.
Mol Pharm. 2024 Feb 5;21(2):864-872. doi: 10.1021/acs.molpharmaceut.3c00964. Epub 2023 Dec 22.
7
Automated prediction of lattice parameters from X-ray powder diffraction patterns.
J Appl Crystallogr. 2021 Nov 30;54(Pt 6):1799-1810. doi: 10.1107/S1600576721010840. eCollection 2021 Dec 1.
8
Crystal Structure Determination from Powder Diffraction Patterns with Generative Machine Learning.
J Am Chem Soc. 2024 Nov 6;146(44):30340-30348. doi: 10.1021/jacs.4c10244. Epub 2024 Sep 19.
9
Automated crystal system identification from electron diffraction patterns using multiview opinion fusion machine learning.
Proc Natl Acad Sci U S A. 2023 Nov 14;120(46):e2309240120. doi: 10.1073/pnas.2309240120. Epub 2023 Nov 9.

引用本文的文献

2
Accurate space-group prediction from composition.
J Appl Crystallogr. 2024 Jun 18;57(Pt 4):975-985. doi: 10.1107/S1600576724004497. eCollection 2024 Aug 1.
3
Introduction to the virtual collection of papers on .
J Appl Crystallogr. 2024 Feb 1;57(Pt 1):1-2. doi: 10.1107/S1600576723010476.

本文引用的文献

1
Crystallography companion agent for high-throughput materials discovery.
Nat Comput Sci. 2021 Apr;1(4):290-297. doi: 10.1038/s43588-021-00059-2. Epub 2021 Apr 19.
2
Automated prediction of lattice parameters from X-ray powder diffraction patterns.
J Appl Crystallogr. 2021 Nov 30;54(Pt 6):1799-1810. doi: 10.1107/S1600576721010840. eCollection 2021 Dec 1.
3
A cloud platform for atomic pair distribution function analysis: PDFitc.
Acta Crystallogr A Found Adv. 2021 Jan 1;77(Pt 1):2-6. doi: 10.1107/S2053273320013066. Epub 2021 Jan 5.
5
Array programming with NumPy.
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.
6
Crystal symmetry determination in electron diffraction using machine learning.
Science. 2020 Jan 31;367(6477):564-568. doi: 10.1126/science.aay3062. Epub 2020 Jan 30.
7
Decoding crystallography from high-resolution electron imaging and diffraction datasets with deep learning.
Sci Adv. 2019 Oct 30;5(10):eaaw1949. doi: 10.1126/sciadv.aaw1949. eCollection 2019 Oct.
9
Machine learning for molecular and materials science.
Nature. 2018 Jul;559(7715):547-555. doi: 10.1038/s41586-018-0337-2. Epub 2018 Jul 25.
10
Insightful classification of crystal structures using deep learning.
Nat Commun. 2018 Jul 17;9(1):2775. doi: 10.1038/s41467-018-05169-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验