Suppr超能文献

基于活动性肺结核和肺部炎症患者构建风险模型及深度学习网络。

Construction of a risk model and deep learning network based on patients with active pulmonary tuberculosis and pulmonary inflammation.

作者信息

Xu Dechang, Zeng Jiang, Xie Fangfang, Yang Qianting, Huang Kaisong, Xiao Wei, Zou Houwen, Zhang Huihua

机构信息

Internal Medicine Center of Ganzhou Cancer Hospital, Ganzhou, Jiangxi 341000, P.R. China.

Ganzhou Fifth People's Hospital, The Ninth Affiliated Clinical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China.

出版信息

Biomed Rep. 2023 Mar 28;18(5):34. doi: 10.3892/br.2023.1616. eCollection 2023 May.

Abstract

Most patients with active pulmonary tuberculosis (TB) are difficult to be differentiated from pneumonia (PN), especially those with acid-fast bacillus smear-negative (AFB) and interferon-γ release assay-positive (IGRA) results. Thus, the aim of the present study was to develop a risk model of low-cost and rapid test for the diagnosis of AFB IGRA TB from PN. A total of 41 laboratory variables of 204 AFB IGRA TB and 156 PN participants were retrospectively analyzed. Candidate variables were identified by t-statistic test and univariate logistic model. The logistic regression analysis was used to construct the multivariate risk model and nomogram with internal and external validation. A total of 13 statistically differential variables were compared between AFB IGRA TB and PN by false discovery rate (FDR) and odds ratio (OR). By integrating five variables, including age, uric acid (UA), albumin (ALB), hemoglobin (Hb) and white blood cell counts (WBC), a multivariate risk model with a concordance index (C-index) of 0.7 (95% CI: 0.61, 0.8) was constructed. The nomogram showed that UA and Hb acted as protective factors with an OR <1, while age, WBC and ALB were risk factors for TB occurrence. Internal and external validation revealed that nomogram prediction was consistent with the actual observations. Collectively, it was revealed that an integration of five biomarkers (age, UA, ALB, Hb and WBC) may be used to quickly predict TB in AFB IGRA clinical samples from PN.

摘要

大多数活动性肺结核(TB)患者难以与肺炎(PN)相鉴别,尤其是那些痰涂片抗酸杆菌阴性(AFB)且干扰素-γ释放试验阳性(IGRA)的患者。因此,本研究的目的是建立一种低成本、快速检测的风险模型,用于从肺炎患者中诊断AFB IGRA肺结核。回顾性分析了204例AFB IGRA肺结核患者和156例肺炎患者的41项实验室变量。通过t检验和单因素逻辑模型确定候选变量。采用逻辑回归分析构建多变量风险模型和列线图,并进行内部和外部验证。通过错误发现率(FDR)和比值比(OR)比较了AFB IGRA肺结核和肺炎之间的13个具有统计学差异的变量。通过整合年龄、尿酸(UA)、白蛋白(ALB)、血红蛋白(Hb)和白细胞计数(WBC)这五个变量,构建了一个一致性指数(C指数)为0.7(95%CI:0.61,0.8)的多变量风险模型。列线图显示,UA和Hb作为保护因素,OR<1,而年龄、WBC和ALB是结核病发生的危险因素。内部和外部验证表明,列线图预测与实际观察结果一致。总体而言,研究表明整合五个生物标志物(年龄、UA、ALB、Hb和WBC)可用于快速预测肺炎患者AFB IGRA临床样本中的结核病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2e3/10079808/3c36a3e6b7c0/br-18-05-01616-g00.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验