Suppr超能文献

用于模拟微重力环境下与年龄相关的肌肉萎缩的人体骨骼肌组织芯片自主平台的验证

Validation of Human Skeletal Muscle Tissue Chip Autonomous Platform to Model Age-Related Muscle Wasting in Microgravity.

作者信息

Parafati Maddalena, Giza Shelby, Shenoy Tushar, Mojica-Santiago Jorge, Hopf Meghan, Malany Legrand, Platt Don, Kuehl Paul, Moore Isabel, Jacobs Zachary, Barnett Gentry, Schmidt Christine, McLamb William, Coen Paul, Clements Twyman, Malany Siobhan

机构信息

University of Florida.

University of Florida and Space Tango.

出版信息

Res Sq. 2023 Mar 29:rs.3.rs-2631490. doi: 10.21203/rs.3.rs-2631490/v1.

Abstract

Microgravity-induced muscle atrophy experienced by astronauts shares similar physiological changes to muscle wasting experienced by older adults, known as sarcopenia. These shared attributes provide a rationale for investigating microgravity-induced molecular changes in human bioengineered muscle cells that may also mimic the progressive underlying pathophysiology of sarcopenia. Here, we report the results of an experiment that incorporated three-dimensional myobundles derived from muscle biopsies from young and older adults, that were integrated into an autonomous CubeLabâ"¢, and flown to the International Space Station (ISS) aboard SpaceX CRS-21 in December 2020 as part of the NIH/NASA funded Tissue Chips in Space program. Global transcriptomic RNA-Seq analysis comparing the myobundles in space and on the ground revealed downregulation of shared transcripts related to myoblast proliferation and muscle differentiation for those in space. The analysis also revealed differentially expressed gene pathways related to muscle metabolism unique to myobundles derived from the older cohort exposed to the space environment compared to ground controls. Gene classes related to inflammatory pathways were uniquely modulated in flight samples cultured from the younger cohort compared to ground controls. Our muscle tissue chip platform provides a novel approach to studying the cell autonomous effects of microgravity on muscle cell biology that may not be appreciated on the whole organ or organism level and sets the stage for continued data collection from muscle tissue chip experimentation in microgravity. Thus, we also report on the challenges and opportunities for conducting autonomous tissue-on-chip CubeLab payloads on the ISS.

摘要

宇航员经历的微重力诱导的肌肉萎缩与老年人经历的肌肉萎缩(即肌肉减少症)具有相似的生理变化。这些共同特征为研究微重力诱导的人类生物工程肌肉细胞中的分子变化提供了理论依据,这些变化可能也模拟了肌肉减少症逐渐发展的潜在病理生理学。在此,我们报告了一项实验的结果,该实验纳入了来自年轻人和老年人肌肉活检的三维肌束,将其整合到一个自主的CubeLab™中,并于2020年12月作为美国国立卫生研究院/美国国家航空航天局资助的太空组织芯片项目的一部分,搭载SpaceX CRS - 21飞往国际空间站(ISS)。通过对太空和地面的肌束进行全球转录组RNA测序分析,发现太空样本中与成肌细胞增殖和肌肉分化相关的共享转录本下调。分析还揭示,与地面对照相比,暴露于太空环境的老年队列来源的肌束中存在与肌肉代谢相关的差异表达基因通路。与地面对照相比,年轻队列培养的飞行样本中与炎症通路相关的基因类别受到独特调节。我们的肌肉组织芯片平台为研究微重力对肌肉细胞生物学的细胞自主效应提供了一种新方法,这种效应在整个器官或生物体水平上可能无法被认识到,并为在微重力环境下继续进行肌肉组织芯片实验的数据收集奠定了基础。因此,我们还报告了在国际空间站上进行自主芯片上组织CubeLab有效载荷实验所面临的挑战和机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de5a/10081368/d3fd30b85689/nihpp-rs2631490v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验