Suppr超能文献

“肌重力”项目旨在研究实际微重力对人类肌肉前体细胞和组织的影响。

The MyoGravity project to study real microgravity effects on human muscle precursor cells and tissue.

作者信息

Di Filippo Ester Sara, Chiappalupi Sara, Falone Stefano, Dolo Vincenza, Amicarelli Fernanda, Marchianò Silvia, Carino Adriana, Mascetti Gabriele, Valentini Giovanni, Piccirillo Sara, Balsamo Michele, Vukich Marco, Fiorucci Stefano, Sorci Guglielmo, Fulle Stefania

机构信息

Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy.

Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy.

出版信息

NPJ Microgravity. 2024 Oct 3;10(1):92. doi: 10.1038/s41526-024-00432-1.

Abstract

Microgravity (µG) experienced during space flights promotes adaptation in several astronauts' organs and tissues, with skeletal muscles being the most affected. In response to reduced gravitational loading, muscles (especially, lower limb and antigravity muscles) undergo progressive mass loss and alteration in metabolism, myofiber size, and composition. Skeletal muscle precursor cells (MPCs), also known as satellite cells, are responsible for the growth and maintenance of muscle mass in adult life as well as for muscle regeneration following damage and may have a major role in µG-induced muscle wasting. Despite the great relevance for astronaut health, very few data are available about the effects of real µG on human muscles. Based on the MyoGravity project, this study aimed to analyze: (i) the cellular and transcriptional alterations induced by real µG in human MPCs (huMPCs) and (ii) the response of human skeletal muscle to normal gravitational loading after prolonged exposure to µG. We evaluated the transcriptomic changes induced by µG on board the International Space Station (ISS) in differentiating huMPCs isolated from Vastus lateralis muscle biopsies of a pre-flight astronaut and an age- and sex-matched volunteer, in comparison with the same cells cultured on the ground in standard gravity (1×g) conditions. We found that huMPCs differentiated under real µG conditions showed: (i) upregulation of genes related to cell adhesion, plasma membrane components, and ion transport; (ii) strong downregulation of genes related to the muscle contraction machinery and sarcomere organization; and (iii) downregulation of muscle-specific microRNAs (myomiRs). Moreover, we had the unique opportunity to analyze huMPCs and skeletal muscle tissue of the same astronaut before and 30 h after a long-duration space flight on board the ISS. Prolonged exposure to real µG strongly affected the biology and functionality of the astronaut's satellite cells, which showed a dramatic reduction of responsiveness to activating stimuli and proliferation rate, morphological changes, and almost inability to fuse into myotubes. RNA-Seq analysis of post- vs. pre-flight muscle tissue showed that genes involved in muscle structure and remodeling are promptly activated after landing following a long-duration space mission. Conversely, genes involved in the myelination process or synapse and neuromuscular junction organization appeared downregulated. Although we have investigated only one astronaut, these results point to a prompt readaptation of the skeletal muscle mechanical components to the normal gravitational loading, but the inability to rapidly recover the physiological muscle myelination/innervation pattern after landing from a long-duration space flight. Together with the persistent functional deficit observed in the astronaut's satellite cells after prolonged exposure to real µG, these results lead us to hypothesize that a condition of inefficient regeneration is likely to occur in the muscles of post-flight astronauts following damage.

摘要

太空飞行期间经历的微重力(µG)促使数名宇航员的多个器官和组织发生适应性变化,其中骨骼肌受影响最大。为应对重力负荷降低,肌肉(尤其是下肢和抗重力肌肉)会逐渐出现质量减轻以及新陈代谢、肌纤维大小和组成的改变。骨骼肌前体细胞(MPCs),也称为卫星细胞,负责成年期肌肉质量的增长和维持以及损伤后的肌肉再生,并且可能在µG诱导的肌肉萎缩中起主要作用。尽管对宇航员健康具有重大意义,但关于真实µG对人体肌肉影响的数据却非常少。基于MyoGravity项目,本研究旨在分析:(i)真实µG对人MPCs(huMPCs)诱导的细胞和转录变化,以及(ii)长时间暴露于µG后人体骨骼肌对正常重力负荷的反应。我们评估了国际空间站(ISS)上µG对从一名飞行前宇航员和一名年龄及性别匹配的志愿者的股外侧肌活检中分离出的正在分化的huMPCs诱导的转录组变化,并与在地面标准重力(1×g)条件下培养的相同细胞进行比较。我们发现,在真实µG条件下分化的huMPCs表现出:(i)与细胞黏附、质膜成分和离子转运相关的基因上调;(ii)与肌肉收缩机制和肌节组织相关的基因强烈下调;以及(iii)肌肉特异性微小RNA(myomiRs)下调。此外,我们有独特的机会分析同一名宇航员在国际空间站进行长时间太空飞行前和飞行后30小时的huMPCs和骨骼肌组织。长时间暴露于真实µG强烈影响了宇航员卫星细胞的生物学特性和功能,这些卫星细胞对激活刺激的反应性和增殖率显著降低,出现形态变化,并且几乎无法融合形成肌管。对飞行后与飞行前肌肉组织的RNA测序分析表明,参与肌肉结构和重塑的基因在长时间太空任务着陆后迅速被激活。相反,参与髓鞘形成过程或突触及神经肌肉接头组织的基因则出现下调。尽管我们仅研究了一名宇航员,但这些结果表明骨骼肌机械成分能迅速重新适应正常重力负荷,但在长时间太空飞行着陆后无法迅速恢复生理肌肉髓鞘形成/神经支配模式。连同长时间暴露于真实µG后在宇航员卫星细胞中观察到的持续功能缺陷,这些结果使我们推测,飞行后宇航员的肌肉在受损后可能会出现再生效率低下的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9209/11450100/1e8dc2ca4403/41526_2024_432_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验