State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China.
Adv Healthc Mater. 2023 Aug;12(21):e2203227. doi: 10.1002/adhm.202203227. Epub 2023 Apr 27.
Monitoring of trace c-Myc protein as the biomarker of ubiquitous cancers is critical in achieving predictive medical diagnostics. However, qualitative and quantitative detection of c-Myc protein with superior single selectivity and sensitivity is still challenging. Herein, a bioinspired photonic sensing microchip for single recognition of c-Myc protein is outlined with two synergistic aspects involving chemical and physical design criteria. Chemical design uses specific molecularly imprinted polymer (MIP) with exquisite complementarity in its chemical functions and spatial geometries to targeted c-Myc protein, leading to excellent sensitivity and selectivity for single identification. Physical design involves optical geometrical double-reflection polarization rotation and multilayer interference of the fabricated periodic photonic architecture inspired by Papilio palinurus butterfly wings to enhance the spectral diversity of reflectance. Therefore, a one-of-a-kind sensing platform integrates the advantages of MIP and bioinspired photonic structure is demonstrated to actualize distinctive signal conversion and amplification for qualitative and quantitative detection of trace c-Myc protein, accompanied with superior sensitivity (detection limit is 0.014 µg mL ), selectivity, stability, anti-interference ability as well as rapid response/recovery time. This sensor microchip uniquely ventures into the territory of functionally combining bioinspired photonic structure with MIP absorbers, proven promising for prevention or diagnosis of cancers in medical field.
作为普适性癌症的生物标志物,痕量 c-Myc 蛋白的监测在实现预测性医学诊断方面至关重要。然而,具有卓越单一选择性和灵敏度的 c-Myc 蛋白的定性和定量检测仍然具有挑战性。在此,提出了一种基于生物启发的光子传感微芯片,用于 c-Myc 蛋白的单一识别,具有涉及化学和物理设计标准的两个协同方面。化学设计使用具有精细化学功能和空间几何互补性的特定分子印迹聚合物(MIP)来靶向 c-Myc 蛋白,从而实现对单一识别的出色灵敏度和选择性。物理设计涉及光学几何双重反射偏振旋转和受 Papilio palinurus 蝴蝶翅膀启发的制造周期性光子结构的多层干涉,以增强反射率的光谱多样性。因此,展示了一种独特的传感平台,该平台集成了 MIP 和生物启发光子结构的优势,可实现痕量 c-Myc 蛋白的定性和定量检测的独特信号转换和放大,具有卓越的灵敏度(检测限为 0.014 µg mL )、选择性、稳定性、抗干扰能力以及快速的响应/恢复时间。这种传感器微芯片独特地涉足将生物启发光子结构与 MIP 吸收剂功能组合的领域,有望在医学领域预防或诊断癌症。