Suppr超能文献

为毒理学建立 FAIR 的计算预测模型。

Making in silico predictive models for toxicology FAIR.

机构信息

School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.

School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.

出版信息

Regul Toxicol Pharmacol. 2023 May;140:105385. doi: 10.1016/j.yrtph.2023.105385. Epub 2023 Apr 8.

Abstract

In silico predictive models for toxicology include quantitative structure-activity relationship (QSAR) and physiologically based kinetic (PBK) approaches to predict physico-chemical and ADME properties, toxicological effects and internal exposure. Such models are used to fill data gaps as part of chemical risk assessment. There is a growing need to ensure in silico predictive models for toxicology are available for use and that they are reproducible. This paper describes how the FAIR (Findable, Accessible, Interoperable, Reusable) principles, developed for data sharing, have been applied to in silico predictive models. In particular, this investigation has focussed on how the FAIR principles could be applied to improved regulatory acceptance of predictions from such models. Eighteen principles have been developed that cover all aspects of FAIR. It is intended that FAIRification of in silico predictive models for toxicology will increase their use and acceptance.

摘要

用于毒理学的计算预测模型包括定量构效关系(QSAR)和基于生理学的动力学(PBK)方法,用于预测物理化学和 ADME 特性、毒理学效应和内部暴露。此类模型用于填补化学风险评估中数据空白的一部分。越来越需要确保可用于毒理学的计算预测模型,并确保它们具有可重复性。本文介绍了用于数据共享的 FAIR(可发现、可访问、可互操作、可重复使用)原则如何应用于计算预测模型。特别是,本研究重点关注 FAIR 原则如何应用于提高此类模型预测结果的监管接受度。已经制定了涵盖 FAIR 所有方面的十八个原则。旨在通过毒理学计算预测模型的 FAIR 化来增加其使用和接受度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验