Sepehri Sara, Heymans Anja, Win Dinja De, Maushagen Jan, Sanctorum Audrey, Debruyne Christophe, Rodrigues Robim M, Kock Joery De, Rogiers Vera, Troyer Olga De, Vanhaecke Tamara
Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium.
WISE lab, Department of Computer Science, Vrije Universiteit Brussel, Pleinlaan 9, Brussels 1050, Belgium.
Database (Oxford). 2025 Jan 28;2025. doi: 10.1093/database/baae121.
The European Union's ban on animal testing for cosmetic products and their ingredients, combined with the lack of validated animal-free methods, poses challenges in evaluating their potential repeated-dose organ toxicity. To address this, innovative strategies like Next-Generation Risk Assessment (NGRA) are being explored, integrating historical animal data with new mechanistic insights from non-animal New Approach Methodologies (NAMs). This paper introduces the TOXIN knowledge graph (TOXIN KG), a tool designed to retrieve toxicological information on cosmetic ingredients, with a focus on liver-related data. TOXIN KG uses graph-structured semantic technology and integrates toxicological data through ontologies, ensuring interoperable representation. The primary data source is safety information on cosmetic ingredients from scientific opinions issued by the Scientific Committee on Consumer Safety between 2009 and 2019. The ToxRTool automates the reliability assessment of toxicity studies, while the Simplified Molecular Input Line Entry System (SMILES) notation standardizes chemical identification, enabling in silico prediction of repeated-dose toxicity via the implementation of the Organization for Economic Co-operation and Development Quantitative Structure-Activity Relationship Toolbox (OECD QSAR Toolbox). The ToXic Process Ontology, enriched with relevant biological repositories, is employed to represent toxicological concepts systematically. Search filters allow the identification of cosmetic compounds potentially linked to liver toxicity. Data visualization is achieved through Ontodia, a JavaScript library. TOXIN KG, filled with information for 88 cosmetic ingredients, allowed us to identify 53 compounds affecting at least one liver toxicity parameter in a 90-day repeated-dose animal study. For one compound, we illustrate how TOXIN KG links this observation to hepatic cholestasis as an adverse outcome. In an ab initio NGRA context, follow-up in vitro studies using human-based NAMs would be necessary to understand the compound's biological activity and the molecular mechanism leading to the adverse effect. In summary, TOXIN KG emerges as a valuable tool for advancing the reusability of cosmetics safety data, providing knowledge in support of NAM-based hazard and risk assessments. Database URL: https://toxin-search.netlify.app/.
欧盟对化妆品及其成分进行动物试验的禁令,再加上缺乏经过验证的无动物方法,给评估其潜在的重复剂量器官毒性带来了挑战。为解决这一问题,人们正在探索诸如下一代风险评估(NGRA)等创新策略,将历史动物数据与来自非动物新方法(NAMs)的新机制见解相结合。本文介绍了毒素知识图谱(TOXIN KG),这是一种旨在检索化妆品成分毒理学信息的工具,重点关注与肝脏相关的数据。TOXIN KG使用图结构语义技术,并通过本体集成毒理学数据,确保可互操作的表示。主要数据源是2009年至2019年消费者安全科学委员会发布的科学意见中有关化妆品成分的安全信息。ToxRTool实现了毒性研究可靠性评估的自动化,而简化分子输入线性条目系统(SMILES)符号则规范了化学识别,通过实施经济合作与发展组织定量构效关系工具箱(OECD QSAR Toolbox)实现了重复剂量毒性的计算机模拟预测。富含相关生物知识库的毒性过程本体被用于系统地表示毒理学概念。搜索过滤器可识别可能与肝脏毒性相关的化妆品化合物。数据可视化通过JavaScript库Ontodia实现。TOXIN KG包含88种化妆品成分的信息,使我们能够在一项90天重复剂量动物研究中识别出53种影响至少一个肝脏毒性参数的化合物。对于一种化合物,我们说明了TOXIN KG如何将这一观察结果与肝内胆汁淤积这一不良后果联系起来。在从头开始的NGRA背景下,有必要使用基于人类的NAMs进行后续体外研究,以了解该化合物的生物活性以及导致不良反应的分子机制。总之,TOXIN KG成为推进化妆品安全数据可重用性的宝贵工具,为基于NAMs的危害和风险评估提供知识支持。数据库网址:https://toxin-search.netlify.app/