Suppr超能文献

空气中碳纳米材料对天然肺表面活性剂的生物物理影响。

Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant.

作者信息

Valle Russell P, Wu Tony, Zuo Yi Y

机构信息

†Department of Mechanical Engineering, University of Hawaii at Ma̅noa, Honolulu, Hawaii 96822, United States.

‡Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States.

出版信息

ACS Nano. 2015 May 26;9(5):5413-21. doi: 10.1021/acsnano.5b01181. Epub 2015 May 6.

Abstract

Inhalation of nanoparticles (NP), including lightweight airborne carbonaceous nanomaterials (CNM), poses a direct and systemic health threat to those who handle them. Inhaled NP penetrate deep pulmonary structures in which they first interact with the pulmonary surfactant (PS) lining at the alveolar air-water interface. In spite of many research efforts, there is a gap of knowledge between in vitro biophysical study and in vivo inhalation toxicology since all existing biophysical models handle NP-PS interactions in the liquid phase. This technical limitation, inherent in current in vitro methodologies, makes it impossible to simulate how airborne NP deposit at the PS film and interact with it. Existing in vitro NP-PS studies using liquid-suspended particles have been shown to artificially inflate the no-observed adverse effect level of NP exposure when compared to in vivo inhalation studies and international occupational exposure limits (OELs). Here, we developed an in vitro methodology called the constrained drop surfactometer (CDS) to quantitatively study PS inhibition by airborne CNM. We show that airborne multiwalled carbon nanotubes and graphene nanoplatelets induce a concentration-dependent PS inhibition under physiologically relevant conditions. The CNM aerosol concentrations controlled in the CDS are comparable to those defined in international OELs. Development of the CDS has the potential to advance our understanding of how submicron airborne nanomaterials affect the PS lining of the lung.

摘要

吸入纳米颗粒(NP),包括轻质空气中碳质纳米材料(CNM),对接触它们的人构成直接的全身性健康威胁。吸入的NP会深入肺部结构,在那里它们首先与肺泡气-水界面的肺表面活性剂(PS)内衬相互作用。尽管进行了许多研究,但体外生物物理研究与体内吸入毒理学之间仍存在知识差距,因为所有现有的生物物理模型都在液相中处理NP-PS相互作用。当前体外方法固有的这一技术限制使得无法模拟空气中的NP如何沉积在PS膜上并与其相互作用。与体内吸入研究和国际职业接触限值(OEL)相比,现有的使用液体悬浮颗粒的体外NP-PS研究已显示会人为地提高NP暴露的未观察到不良反应水平。在此,我们开发了一种称为约束滴表面张力仪(CDS)的体外方法,以定量研究空气中CNM对PS的抑制作用。我们表明,在生理相关条件下,空气中的多壁碳纳米管和石墨烯纳米片会诱导浓度依赖性的PS抑制。CDS中控制的CNM气溶胶浓度与国际OEL中定义的浓度相当。CDS的开发有可能增进我们对亚微米级空气中纳米材料如何影响肺PS内衬的理解。

相似文献

引用本文的文献

7
Biophysical function of pulmonary surfactant in liquid ventilation.液体通气中肺表面活性物质的生物物理功能。
Biophys J. 2023 Aug 8;122(15):3099-3107. doi: 10.1016/j.bpj.2023.06.014. Epub 2023 Jun 23.
9
Lung surfactant as a biophysical assay for inhalation toxicology.肺表面活性剂作为吸入毒理学的生物物理检测方法。
Curr Res Toxicol. 2022 Dec 23;4:100101. doi: 10.1016/j.crtox.2022.100101. eCollection 2023.
10
Effect of Model Tear Film Lipid Layer on Water Evaporation.泪膜脂质层模型对水蒸发的影响。
Invest Ophthalmol Vis Sci. 2023 Jan 3;64(1):13. doi: 10.1167/iovs.64.1.13.

本文引用的文献

1
Surface tension in situ in flooded alveolus unaltered by albumin.充满液体的肺泡内原位表面张力不受白蛋白影响。
J Appl Physiol (1985). 2014 Sep 1;117(5):440-51. doi: 10.1152/japplphysiol.00084.2014. Epub 2014 Jun 26.
10
Understanding the toxicity of carbon nanotubes.了解碳纳米管的毒性。
Acc Chem Res. 2013 Mar 19;46(3):702-13. doi: 10.1021/ar300028m. Epub 2012 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验