Department of Psychiatry, 3158University of Alberta, Edmonton, Alberta, Canada.
Analytics and Performance Reporting Branch, Ministry of Health, 151965Government of Alberta, Edmonton, Alberta, Canada.
Can J Psychiatry. 2023 Jan;68(1):54-63. doi: 10.1177/07067437221114094. Epub 2022 Jul 26.
Opioid use disorder (OUD) is a chronic relapsing disorder with a problematic pattern of opioid use, affecting nearly 27 million people worldwide. Machine learning (ML)-based prediction of OUD may lead to early detection and intervention. However, most ML prediction studies were not based on representative data sources and prospective validations, limiting their potential to predict future new cases. In the current study, we aimed to develop and validate an ML model that could predict individual OUD cases based on representative large-scale health data.
We present an ensemble machine-learning model trained on a cross-linked Canadian administrative health data set from 2014 to 2018 ( = 699,164), with validation of model-predicted OUD cases on a hold-out sample from 2014 to 2018 ( = 174,791) and prospective prediction of OUD cases on a non-overlapping sample from 2019 ( = 316,039). We used administrative records of OUD diagnosis for each subject based on International Classification of Diseases (ICD) codes.
With 6409 OUD cases in 2019 (mean [SD], 45.34 [14.28], 3400 males), our model prospectively predicted OUD cases at a high accuracy (balanced accuracy, 86%, sensitivity, 93%; specificity 79%). In accord with prior findings, the top risk factors for OUD in this model were opioid use indicators and a history of other substance use disorders.
Our study presents an individualized prospective prediction of OUD cases by applying ML to large administrative health datasets. Such prospective predictions based on ML would be essential for potential future clinical applications in the early detection of OUD.
阿片类药物使用障碍(OUD)是一种慢性复发性疾病,其阿片类药物使用模式存在问题,影响全球近 2700 万人。基于机器学习(ML)的 OUD 预测可能导致早期发现和干预。然而,大多数基于 ML 的预测研究不是基于有代表性的数据源和前瞻性验证,限制了它们预测未来新病例的潜力。在当前的研究中,我们旨在开发和验证一种基于代表性大规模健康数据预测个体 OUD 病例的 ML 模型。
我们提出了一种基于 2014 年至 2018 年交叉链接的加拿大行政健康数据集的集成机器学习模型(n=699164),在 2014 年至 2018 年的保留样本(n=174791)上验证模型预测的 OUD 病例,并在 2019 年的非重叠样本(n=316039)上进行前瞻性 OUD 病例预测。我们使用每个患者基于国际疾病分类(ICD)编码的 OUD 诊断的行政记录。
在 2019 年有 6409 例 OUD 病例(平均值[标准差],45.34[14.28],3400 名男性),我们的模型前瞻性地以高准确度(平衡准确度为 86%,敏感性为 93%,特异性为 79%)预测 OUD 病例。与之前的发现一致,该模型中 OUD 的首要风险因素是阿片类药物使用指标和其他物质使用障碍的病史。
我们的研究通过将 ML 应用于大型行政健康数据集,对 OUD 病例进行个体化前瞻性预测。这种基于 ML 的前瞻性预测对于未来在 OUD 的早期检测中潜在的临床应用至关重要。