Suppr超能文献

溶液合成的石墨烯纳米带异质结在金刚石上的光响应表明光可调光电二极管极性。

Photoresponse of Solution-Synthesized Graphene Nanoribbon Heterojunctions on Diamond Indicating Phototunable Photodiode Polarity.

作者信息

Zhang Xiaoxi, Hu Yunbin, Lien-Medrano Carlos R, Li Juan, Shi Jinping, Qin Xinshun, Liao Zhenxing, Wang Yan, Wang Zishu, Li Jiawei, Chen Jianing, Zhang Guangyu, Barth Johannes V, Frauenheim Thomas, Auwärter Willi, Narita Akimitsu, Müllen Klaus, Palma Carlos-Andres

机构信息

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.

出版信息

J Am Chem Soc. 2023 Apr 26;145(16):8757-8763. doi: 10.1021/jacs.2c13822. Epub 2023 Apr 12.

Abstract

Graphene nanoribbon heterostructures and heterojunctions have attracted interest as next-generation molecular diodes with atomic precision. Their mass production via solution methods and prototypical device integration remains to be explored. Here, the bottom-up solution synthesis and characterization of liquid-phase-processable graphene nanoribbon heterostructures (GNRHs) are demonstrated. Joint photoresponsivity measurements and simulations provide evidence of the structurally defined heterostructure motif acting as a type-I heterojunction. Real-time, time-dependent density functional tight-binding simulations further reveal that the photocurrent polarity can be tuned at different excitation wavelengths. Our results introduce liquid-phase-processable, self-assembled heterojunctions for the development of nanoscale diode circuitry and adaptive hardware.

摘要

石墨烯纳米带异质结构和异质结作为具有原子精度的下一代分子二极管引起了人们的兴趣。通过溶液法进行大规模生产以及实现原型器件集成仍有待探索。在此,展示了液相可加工石墨烯纳米带异质结构(GNRHs)的自下而上溶液合成及表征。联合光响应测量和模拟提供了结构明确的异质结构基序作为I型异质结的证据。实时、含时密度泛函紧束缚模拟进一步表明,光电流极性可在不同激发波长下进行调节。我们的研究结果为纳米级二极管电路和自适应硬件的发展引入了液相可加工的自组装异质结。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验