E Wenlong, Yi Wei, Ding Honghe, Zhu Junfa, Rosei Federico, Yang Xueming, Yu Miao
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Proc Natl Acad Sci U S A. 2024 Sep 10;121(37):e2408919121. doi: 10.1073/pnas.2408919121. Epub 2024 Sep 6.
Free of posttransfer, on-surface synthesis (OSS) of single-atomic-layer nanostructures directly on semiconductors holds considerable potential for next-generation devices. However, due to the high diffusion barrier and abundant defects on semiconductor surfaces, extended and well-defined OSS on semiconductors has major difficulty. Furthermore, given semiconductors' limited thermal catalytic activity, initiating high-barrier reactions remains a significant challenge. Herein, using TiO(011) as a prototype, we present an effective strategy for steering the molecule adsorption and reaction processes on semiconductors, delivering lengthy graphene nanoribbons with extendable widths. By introducing interstitial titanium (Ti) and oxygen vacancies (O), we convert TiO(011) from a passive supporting template into a metal-like catalytic platform. This regulation shifts electron density and surface dipoles, resulting in tunable catalytic activity together with varied molecule adsorption and diffusion. Cyclodehydrogenation, which is inefficient on pristine TiO(011), is markedly improved on Ti/O-doped TiO. Even interribbon cyclodehydrogenation is achieved. The final product's dimensions, quality, and coverage are all controllable. Ti doping outperforms O in producing regular and prolonged products, whereas excessive Ti compromises molecule landing and coupling. This work demonstrates the crucial role of semiconductor substrates in OSS and advances OSS on semiconductors from an empirical trial-and-error methodology to a systematic and controllable paradigm.
直接在半导体上进行单原子层纳米结构的无后转移表面合成(OSS)对下一代器件具有巨大潜力。然而,由于半导体表面的高扩散势垒和大量缺陷,在半导体上进行扩展且明确的OSS存在重大困难。此外,鉴于半导体有限的热催化活性,引发高势垒反应仍然是一项重大挑战。在此,以TiO(011)为原型,我们提出了一种有效的策略来控制半导体上分子的吸附和反应过程,从而得到宽度可扩展的长石墨烯纳米带。通过引入间隙钛(Ti)和氧空位(O),我们将TiO(011)从一个被动的支撑模板转变为一个类似金属的催化平台。这种调控改变了电子密度和表面偶极子,导致催化活性可调,同时分子吸附和扩散也发生变化。在原始TiO(011)上效率低下的环脱氢反应,在Ti/O掺杂的TiO上得到了显著改善。甚至实现了带间环脱氢反应。最终产物的尺寸、质量和覆盖率都是可控的。在生成规则且延长的产物方面,Ti掺杂优于O掺杂,而过量的Ti会影响分子的着陆和耦合。这项工作证明了半导体衬底在OSS中的关键作用,并将半导体上的OSS从经验性的试错方法推进到一个系统且可控的范式。