Suppr超能文献

基于自监督神经网络的 Logan 参考图参数 PET 成像简化模型。

A Shortened Model for Logan Reference Plot Implemented via the Self-Supervised Neural Network for Parametric PET Imaging.

出版信息

IEEE Trans Med Imaging. 2023 Oct;42(10):2842-2852. doi: 10.1109/TMI.2023.3266455. Epub 2023 Oct 2.

Abstract

Dynamic PET imaging provides superior physiological information than conventional static PET imaging. However, the dynamic information is gained at the cost of a long scanning protocol; this limits the clinical application of dynamic PET imaging. We developed a modified Logan reference plot model to shorten the acquisition procedure in dynamic PET imaging by omitting the early-time information necessary for the conventional reference Logan model. The proposed model is accurate theoretically, but the straightforward approach raises the sampling problem in implementation and results in noisy parametric images. We then designed a self-supervised convolutional neural network to increase the noise performance of parametric imaging, with dynamic images of only a single subject for training. The proposed method was validated via simulated and real dynamic [Formula: see text]-fallypride PET data. Results showed that it accurately estimated the distribution volume ratio (DVR) in dynamic PET with a shortened scanning protocol, e.g., 20 minutes, where the estimations were comparable with those obtained from a standard dynamic PET study of 120 minutes of acquisition. Further comparisons illustrated that our method outperformed the shortened Logan model implemented with Gaussian filtering, regularization, BM4D and the 4D deep image prior methods in terms of the trade-off between bias and variance. Since the proposed method uses data acquired in a short period of time upon the equilibrium, it has the potential to add clinical values by providing both DVR and Standard Uptake Value (SUV) simultaneously. It thus promotes clinical applications of dynamic PET studies when neuronal receptor functions are studied.

摘要

动态 PET 成像提供了比传统静态 PET 成像更优越的生理信息。然而,动态信息是以延长扫描协议为代价获得的;这限制了动态 PET 成像的临床应用。我们开发了一种改进的 Logan 参考图模型,通过省略传统参考 Logan 模型所需的早期信息来缩短动态 PET 成像的采集过程。该模型在理论上是准确的,但直接的方法在实现中提出了采样问题,并导致参数图像产生噪声。然后,我们设计了一种自监督卷积神经网络来提高参数成像的噪声性能,仅使用单个受试者的动态图像进行训练。通过模拟和真实的[Formula: see text]-fallypride PET 数据验证了该方法。结果表明,它可以准确地估计缩短扫描协议(例如 20 分钟)下的动态 PET 的分布容积比(DVR),其估计结果与标准动态 PET 研究(120 分钟采集)获得的结果相当。进一步的比较表明,与高斯滤波、正则化、BM4D 和 4D 深度图像先验方法实施的缩短 Logan 模型相比,我们的方法在偏差和方差之间的权衡方面表现更好。由于该方法使用在平衡期内短时间内采集的数据,因此它有可能通过同时提供 DVR 和标准摄取值(SUV)来提供临床价值。因此,当研究神经元受体功能时,它促进了动态 PET 研究的临床应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验