Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA.
Med Phys. 2012 Jun;39(6):3319-31. doi: 10.1118/1.4718669.
Highly constrained backprojection-local reconstruction (HYPR-LR) has made a dramatic impact on magnetic resonance angiography (MRA) and shows promise for positron emission tomography (PET) because of the improvements in the signal-to-noise ratio (SNR) it provides dynamic images. For PET in particular, HYPR-LR could improve kinetic analysis methods that are sensitive to noise. In this work, the authors closely examine the performance of HYPR-LR in the context of kinetic analysis, they develop an implementation of the algorithm that can be tailored to specific PET imaging tasks to minimize bias and maximize improvement in variance, and they provide a framework for validating the use of HYPR-LR processing for a particular imaging task.
HYPR-LR can introduce errors into non sparse PET studies that might bias kinetic parameter estimates. An implementation of HYPR-LR is proposed that uses multiple temporally summed composite images that are formed based on the kinetics of the tracer being studied (HYPR-LR-MC). The effects of HYPR-LR-MC and of HYPR-LR using a full composite formed with all the frames in the study (HYPR-LR-FC) on the kinetic analysis of Pittsburgh compound-B ([11C]-PIB) are studied. HYPR-LR processing is compared to spatial smoothing. HYPR-LR processing was evaluated using both simulated and human studies. Nondisplaceable binding potential (BP(ND)) parametric images were generated from fifty noise realizations of the same numerical phantom and eight [(11)C]-PIB positive human scans before and after HYPR-LR processing or smoothing using the reference region Logan graphical method and receptor parametric mapping (RPM2). The bias and coefficient of variation in the frontal and parietal cortex in the simulated parametric images were calculated to evaluate the absolute performance of HYPR-LR processing. Bias in the human data was evaluated by comparing parametric image BP(ND) values averaged over large regions of interest (ROIs) to Logan estimates of the BP(ND) from TACs averaged over the same ROIs. Variance was assessed qualitatively in the parametric images and semiquantitatively by studying the correlation between voxel BP(ND) estimates from Logan analysis and RPM2.
Both the simulated and human data show that HYPR-LR-FC overestimates BP(ND) values in regions of high [(11)C]-PIB uptake. HYPR-LR-MC virtually eliminates this bias. Both implementations of HYPR-LR reduce variance in the parametric images generated with both Logan analysis and RPM2, and HYPR-LR-FC provides a greater reduction in variance. This reduction in variance nearly eliminates the noise-dependent Logan bias. The variance reduction is greater for the Logan method, particularly for HYPR-LR-MC, and the variance in the resulting Logan images is comparable to that in the RPM2 images. HYPR-LR processing compares favorably with spatial smoothing, particularly when the data are analyzed with the Logan method, as it provides a reduction in variance with no loss of spatial resolution.
HYPR-LR processing shows significant potential for reducing variance in parametric images, and can eliminate the noise-dependent Logan bias. HYPR-LR-FC processing provides the greatest reduction in variance but introduces a positive bias into the BP(ND) of high-uptake border regions. The proposed method for forming HYPR composite images, HYPR-LR-MC, eliminates this bias at the cost of less variance reduction.
高度约束的反向投影-局部重建(HYPR-LR)对磁共振血管造影(MRA)产生了重大影响,并有望用于正电子发射断层扫描(PET),因为它提供了动态图像的信噪比(SNR)的改善。对于 PET 来说,HYPR-LR 可以改善对噪声敏感的动力学分析方法。在这项工作中,作者在动力学分析的背景下仔细研究了 HYPR-LR 的性能,他们开发了一种可以针对特定的 PET 成像任务进行调整的算法实现,以最小化偏差并最大限度地提高方差的改进,并为验证特定成像任务使用 HYPR-LR 处理提供了一个框架。
HYPR-LR 可能会对可能使动力学参数估计产生偏差的非稀疏 PET 研究引入误差。提出了一种使用基于被研究示踪剂动力学形成的多个时间总和复合图像的 HYPR-LR 实现(HYPR-LR-MC)。研究了 HYPR-LR-MC 和使用研究中所有帧形成的全复合图像(HYPR-LR-FC)对匹兹堡化合物-B([11C]-PIB)动力学分析的影响。HYPR-LR 处理与空间平滑进行了比较。HYPR-LR 处理使用模拟和人体研究进行了评估。从相同数值体模的五十个噪声实现和八个[11C]-PIB 阳性人体扫描中生成了不可置换结合势(BP(ND))参数图像,然后在进行 HYPR-LR 处理或平滑之前和之后使用参考区域 Logan 图形方法和受体参数映射(RPM2)。在模拟参数图像中计算了额叶和顶叶皮质的偏差和变异系数,以评估 HYPR-LR 处理的绝对性能。通过比较大感兴趣区域(ROI)中平均的参数图像 BP(ND)值与同一 ROI 中 TAC 平均的 Logan 估计值,评估了人体数据中的偏差。通过研究 Logan 分析和 RPM2 中体素 BP(ND)估计之间的相关性,在参数图像中定性地和半定量地评估了方差。
模拟和人体数据均表明,HYPR-LR-FC 高估了高摄取区的 BP(ND)值。HYPR-LR-MC 几乎消除了这种偏差。两种 HYPR-LR 实现都降低了使用 Logan 分析和 RPM2 生成的参数图像中的方差,并且 HYPR-LR-FC 提供了更大的方差降低。这种方差降低几乎消除了依赖于噪声的 Logan 偏差。对于 Logan 方法,方差降低更大,特别是对于 HYPR-LR-MC,并且得到的 Logan 图像的方差与 RPM2 图像的方差相当。HYPR-LR 处理与空间平滑相比具有明显的优势,特别是当使用 Logan 方法分析数据时,因为它可以降低方差而不会降低空间分辨率。
HYPR-LR 处理在降低参数图像方差方面具有很大的潜力,并且可以消除依赖于噪声的 Logan 偏差。HYPR-LR-FC 处理提供了最大的方差降低,但会引入高摄取边界区域的 BP(ND)正偏差。所提出的形成 HYPR 复合图像的方法,HYPR-LR-MC,以降低方差为代价消除了这种偏差。