Suppr超能文献

4D 深度图像先验:使用无监督的四维分支卷积神经网络进行动态 PET 图像去噪。

4D deep image prior: dynamic PET image denoising using an unsupervised four-dimensional branch convolutional neural network.

机构信息

Central Research Laboratory, Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan.

Department of Radiological Sciences, Faculty of Health Sciences, Morinomiya University of Medical Sciences, 1-26-16 Nankokita, Suminoe-ku, Osaka, 559-8611, Japan.

出版信息

Phys Med Biol. 2021 Jan 14;66(1):015006. doi: 10.1088/1361-6560/abcd1a.

Abstract

Although convolutional neural networks (CNNs) demonstrate the superior performance in denoising positron emission tomography (PET) images, a supervised training of the CNN requires a pair of large, high-quality PET image datasets. As an unsupervised learning method, a deep image prior (DIP) has recently been proposed; it can perform denoising with only the target image. In this study, we propose an innovative procedure for the DIP approach with a four-dimensional (4D) branch CNN architecture in end-to-end training to denoise dynamic PET images. Our proposed 4D CNN architecture can be applied to end-to-end dynamic PET image denoising by introducing a feature extractor and a reconstruction branch for each time frame of the dynamic PET image. In the proposed DIP method, it is not necessary to prepare high-quality and large patient-related PET images. Instead, a subject's own static PET image is used as additional information, dynamic PET images are treated as training labels, and denoised dynamic PET images are obtained from the CNN outputs. Both simulation with [F]fluoro-2-deoxy-D-glucose (FDG) and preclinical data with [F]FDG and [C]raclopride were used to evaluate the proposed framework. The results showed that our 4D DIP framework quantitatively and qualitatively outperformed 3D DIP and other unsupervised denoising methods. The proposed 4D DIP framework thus provides a promising procedure for dynamic PET image denoising.

摘要

虽然卷积神经网络(CNNs)在正电子发射断层扫描(PET)图像去噪方面表现出了优异的性能,但 CNN 的监督训练需要一对大型、高质量的 PET 图像数据集。作为一种无监督学习方法,深度图像先验(DIP)最近被提出;它只需要目标图像就可以进行去噪。在这项研究中,我们提出了一种创新的方法,即使用具有四维(4D)分支 CNN 架构的 DIP 方法进行端到端训练,以对动态 PET 图像进行去噪。我们提出的 4D CNN 架构可以通过为动态 PET 图像的每个时间帧引入特征提取器和重建分支,应用于端到端动态 PET 图像去噪。在提出的 DIP 方法中,不需要准备高质量和大型的与患者相关的 PET 图像。相反,将患者自己的静态 PET 图像用作附加信息,将动态 PET 图像用作训练标签,并从 CNN 输出中获得去噪后的动态 PET 图像。使用[F]氟-2-脱氧-D-葡萄糖(FDG)的模拟和[F]FDG 和[C]raclopride 的临床前数据来评估所提出的框架。结果表明,我们的 4D DIP 框架在定量和定性上均优于 3D DIP 和其他无监督去噪方法。因此,所提出的 4D DIP 框架为动态 PET 图像去噪提供了一种很有前途的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验