文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

转化连接组学:机器学习在宏观连接组学中的应用概述,以获得临床见解。

Translational Connectomics: overview of machine learning in macroscale Connectomics for clinical insights.

机构信息

BrainSightAI, No. 677, 1st Floor, 27th Main, 13th Cross, HSR Layout, Sector 1, Adugodi, Bengaluru, Karnataka, 560102, India.

出版信息

BMC Neurol. 2024 Sep 28;24(1):364. doi: 10.1186/s12883-024-03864-0.


DOI:10.1186/s12883-024-03864-0
PMID:39342171
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11438080/
Abstract

Connectomics is a neuroscience paradigm focused on noninvasively mapping highly intricate and organized networks of neurons. The advent of neuroimaging has led to extensive mapping of the brain functional and structural connectome on a macroscale level through modalities such as functional and diffusion MRI. In parallel, the healthcare field has witnessed a surge in the application of machine learning and artificial intelligence for diagnostics, especially in imaging. While reviews covering machine learn ing and macroscale connectomics exist for specific disorders, none provide an overview that captures their evolving role, especially through the lens of clinical application and translation. The applications include understanding disorders, classification, identifying neuroimaging biomarkers, assessing severity, predicting outcomes and intervention response, identifying potential targets for brain stimulation, and evaluating the effects of stimulation intervention on the brain and connectome mapping in patients before neurosurgery. The covered studies span neurodegenerative, neurodevelopmental, neuropsychiatric, and neurological disorders. Along with applications, the review provides a brief of common ML methods to set context. Conjointly, limitations in ML studies within connectomics and strategies to mitigate them have been covered.

摘要

连接组学是一种神经科学范式,专注于无创性映射高度复杂和有组织的神经元网络。神经影像学的出现使得通过功能磁共振成像和弥散磁共振成像等模态在宏观尺度上对大脑功能和结构连接组进行了广泛的映射。与此同时,医疗保健领域见证了机器学习和人工智能在诊断中的应用呈指数式增长,尤其是在影像学方面。虽然有针对特定疾病的综述涵盖了机器学习和宏观连接组学,但没有一篇综述能全面介绍它们的发展作用,尤其是从临床应用和转化的角度来看。其应用包括了解疾病、分类、识别神经影像学生物标志物、评估严重程度、预测结果和干预反应、识别脑刺激的潜在靶点,以及在神经外科手术前评估刺激干预对大脑和连接组映射的影响。所涵盖的研究跨越了神经退行性、神经发育性、神经精神性和神经遗传性疾病。除了应用,本综述还简要介绍了常见的机器学习方法以提供背景信息。同时,还介绍了连接组学中机器学习研究的局限性及其缓解策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/11438080/95bf95197e27/12883_2024_3864_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/11438080/14840380580b/12883_2024_3864_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/11438080/95bf95197e27/12883_2024_3864_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/11438080/14840380580b/12883_2024_3864_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/11438080/95bf95197e27/12883_2024_3864_Fig2_HTML.jpg

相似文献

[1]
Translational Connectomics: overview of machine learning in macroscale Connectomics for clinical insights.

BMC Neurol. 2024-9-28

[2]
Connectomics in Brain Malformations: How Is the Malformed Brain Wired?

Neuroimaging Clin N Am. 2019-5-21

[3]
Neuropsychiatric disease classification using functional connectomics - results of the connectomics in neuroimaging transfer learning challenge.

Med Image Anal. 2021-5

[4]
Diagnosis and prognosis of Alzheimer's disease using brain morphometry and white matter connectomes.

Neuroimage Clin. 2019-5-13

[5]
Neuroimaging and connectomics of drug-resistant epilepsy at multiple scales: From focal lesions to macroscale networks.

Epilepsia. 2019-3-19

[6]
Multimodal Connectomics in Psychiatry: Bridging Scales From Micro to Macro.

Biol Psychiatry Cogn Neurosci Neuroimaging. 2018-4-19

[7]
Comparative connectomics of the primate social brain.

Neuroimage. 2021-12-15

[8]
Connections, Tracts, Fractals, and the Rest: A Working Guide to Network and Connectivity Studies in Neurosurgery.

World Neurosurg. 2020-8

[9]
Diffusion MRI-based connectomics features improve the noninvasive prediction of H3K27M mutation in brainstem gliomas.

Radiother Oncol. 2023-9

[10]
Microstructure-Informed Connectomics: Enriching Large-Scale Descriptions of Healthy and Diseased Brains.

Brain Connect. 2018-11-16

引用本文的文献

[1]
Leveraging AI-Driven Neuroimaging Biomarkers for Early Detection and Social Function Prediction in Autism Spectrum Disorders: A Systematic Review.

Healthcare (Basel). 2025-7-22

[2]
From Tumor to Network: Functional Connectome Heterogeneity and Alterations in Brain Tumors-A Multimodal Neuroimaging Narrative Review.

Cancers (Basel). 2025-6-27

[3]
Combined deep and reinforcement learning with gaming to promote healthcare in neurodevelopmental disorders: a new hypothesis.

Front Hum Neurosci. 2025-3-14

[4]
Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of depression in stroke patients.

BMC Geriatr. 2025-3-22

[5]
Multiscale brain modeling: bridging microscopic and macroscopic brain dynamics for clinical and technological applications.

Front Cell Neurosci. 2025-2-19

本文引用的文献

[1]
The emergence of multiscale connectomics-based approaches in stroke recovery.

Trends Neurosci. 2024-4

[2]
Connectome-based modelling of neurodegenerative diseases: towards precision medicine and mechanistic insight.

Nat Rev Neurosci. 2023-10

[3]
Subject-specific whole-brain parcellations of nodes and boundaries are modulated differently under 10 Hz rTMS.

Sci Rep. 2023-8-3

[4]
Connectomic insight into unique stroke patient recovery after rTMS treatment.

Front Neurol. 2023-7-6

[5]
The functional connectome in obsessive-compulsive disorder: resting-state mega-analysis and machine learning classification for the ENIGMA-OCD consortium.

Mol Psychiatry. 2023-10

[6]
Identifying the engagement of a brain network during a targeted tDCS-fMRI experiment using a machine learning approach.

PLoS Comput Biol. 2023-4

[7]
Connectomics underlying motor functional outcomes in the acute period following stroke.

Front Aging Neurosci. 2023-2-15

[8]
Functional connectivity analysis of the depression connectome provides potential markers and targets for transcranial magnetic stimulation.

J Affect Disord. 2023-5-15

[9]
One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry.

Biol Psychiatry. 2023-4-15

[10]
Chronic Mild Traumatic Brain Injury: Aberrant Static and Dynamic Connectomic Features Identified Through Machine Learning Model Fusion.

Neuroinformatics. 2023-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索