College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China.
Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
J Colloid Interface Sci. 2023 Aug;643:17-25. doi: 10.1016/j.jcis.2023.04.009. Epub 2023 Apr 7.
Using seawater as the replacement of freshwater for electrolysis, with the integration of renewable energy, is deemed as an attractive manner to harvest green hydrogen. However, the complexity of seawater puts forward stricter requirement to the electrocatalyst to alleviate the chlorine electrochemistry and corrosion. Herein, a nanosheet array of NiFe-MOF@NiP/Ni(OH) is devised by partially substituting terephthalic acid (HBDC) ligand by ferrocenecarboxylic acid (FcCA). Tailoring the active site into an under-coordinated fashion affords NiFe-MOF@NiP/Ni(OH) excellent performance towards oxygen evolution reaction (OER), only requiring the overpotentials of 302 mV and 394 mV in alkaline seawater to drive the current densities of 100 and 1000 mA cm, respectively. Moreover, the as-obtained electrocatalyst showed robust durability for operating more than 120 h at 500 mA cm under harsh condition (6 M KOH + 1.5 M NaCl, 60 ℃). Density functional theory (DFT) calculations confirmed that tuning the coordination environment of Ni in NiFe-MOF by incorporating the non-bridging FcCA ligands could boost the formation of more active catalytic sites, which can simultaneously enhance the electronic conductivity and accelerate OER kinetics. This work provides beneficial enlightenment of combining MOF-based electrocatalyst with direct electrolysis of seawater.
使用海水替代淡水进行电解,并与可再生能源相结合,被认为是一种有吸引力的方式来获取绿色氢气。然而,海水的复杂性对电催化剂提出了更严格的要求,以减轻氯电化学和腐蚀。在此,通过部分用二茂铁羧酸(FcCA)取代对苯二甲酸(HBDC)配体,设计了一种 NiFe-MOF@NiP/Ni(OH)纳米片阵列。将活性位点调整为欠配位方式,使 NiFe-MOF@NiP/Ni(OH) 在碱性海水中对析氧反应(OER)具有优异的性能,仅需 302 mV 和 394 mV 的过电势即可分别驱动 100 和 1000 mA cm 的电流密度。此外,所获得的电催化剂在恶劣条件(6 M KOH+1.5 M NaCl,60℃)下在 500 mA cm 下运行超过 120 h 时表现出强大的耐用性。密度泛函理论(DFT)计算证实,通过在 NiFe-MOF 中掺入非桥接的 FcCA 配体来调整 Ni 的配位环境,可以促进更多活性催化位点的形成,这可以同时提高电子导电性并加速 OER 动力学。这项工作为结合基于 MOF 的电催化剂与海水的直接电解提供了有益的启示。