Suppr超能文献

一种基于乳腺癌影像学的新型列线图模型,用于预测新辅助治疗后腋窝淋巴结的状态。

A novel nomogram model of breast cancer-based imaging for predicting the status of axillary lymph nodes after neoadjuvant therapy.

机构信息

Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.

Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.

出版信息

Sci Rep. 2023 Apr 12;13(1):5952. doi: 10.1038/s41598-023-29967-1.

Abstract

This study is aimed to develop and validate a novel nomogram model that can preoperatively predict axillary lymph node pathological complete response (pCR) after NAT and avoid unnecessary axillary lymph node dissection (ALND) for breast cancer patients. A total of 410 patients who underwent NAT and were pathologically confirmed to be axillary lymph node positive after breast cancer surgery were included. They were divided into two groups: patients with axillary lymph node pCR and patients with residual node lesions after NAT. Then the nomogram prediction model was constructed by univariate and multivariate logistic regression. The result of multivariate logistic regression analysis showed that molecular subtypes, molybdenum target (MG) breast, computerized tomography (CT) breast, ultrasound (US) axilla, magnetic resonance imaging (MRI) axilla, and CT axilla (all p < 0.001) had a significant impact on the evaluation of axillary lymph node status after NAT. The nomogram score appeared that AUC was 0.832 (95% CI 0.786-0.878) in the training cohort and 0.947 (95% CI 0.906-0.988) in the validation cohort, respectively. The decision curve represented that the nomogram has a positive predictive ability, indicating its potential as a practical clinical tool.

摘要

本研究旨在开发和验证一种新的列线图模型,该模型可预测新辅助化疗(NAT)后腋窝淋巴结病理完全缓解(pCR),并避免对乳腺癌患者进行不必要的腋窝淋巴结清扫术(ALND)。共纳入 410 例接受 NAT 治疗且术后病理证实腋窝淋巴结阳性的乳腺癌患者。将其分为两组:腋窝淋巴结 pCR 患者和 NAT 后残留淋巴结病变患者。然后通过单因素和多因素逻辑回归构建列线图预测模型。多因素逻辑回归分析结果显示,分子亚型、钼靶(MG)乳腺、计算机断层扫描(CT)乳腺、超声(US)腋窝、磁共振成像(MRI)腋窝和 CT 腋窝(均 P<0.001)对 NAT 后腋窝淋巴结状态的评估有显著影响。列线图评分显示,在训练队列中的 AUC 为 0.832(95%CI 0.786-0.878),在验证队列中的 AUC 为 0.947(95%CI 0.906-0.988)。决策曲线表明,该列线图具有积极的预测能力,表明其作为一种实用的临床工具具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9be1/10097686/e379e0d0ddd3/41598_2023_29967_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验