University of Tokyo, Tokyo, Japan.
International Virtual Muography Institute (VMI), Global, Tokyo, Japan.
Sci Rep. 2023 Apr 12;13(1):5951. doi: 10.1038/s41598-023-32262-8.
Time synchronization of sensor nodes is critical for optimal operation of wireless sensor networks (WSNs). Since clocks incorporated into each node tend to drift, recurrent corrections are required. Most of these correction schemes involve clients periodically receive RF timing signals from a time server. However, an RF-based scheme is prone to glitches or failure unless operating in a region with almost entirely unobstructed space; hence it only operates well in a limited range of environments. For example, GPS requires open-sky environments. Moreover, the precision of land-based RF schemes is limited to a few micro seconds. In this work, we report on a more versatile and new type of recurrent clock resynchronization scheme called cosmic time calibrator (CTC) and its development and testing. CTC utilizes cosmic-ray muon signals instead of RF signals. Muons are penetrative and continuously precipitating onto the Earth's surface, and they tend to travel linearly through encountered matter at approximately the speed of light in vacuum. Therefore, muons themselves can periodically transfer the precise timing information from node to node; hence, the performance of the inter-nodal communication device such as Wi-Fi or Bluetooth is minimized/unnecessary for an online/offline WSN analysis. The experimental results have indicated that a resynchronization frequency and precision of 60 Hz and ± 4.3 ns (S.D.) can be achieved. Modelling work of the WSN-based structural health monitoring of aerospace structures has shown that CTC can contribute to the development of new critical and useful applications of WSN in a wider range of environments.
传感器节点的时间同步对于无线传感器网络 (WSN) 的最佳运行至关重要。由于每个节点中包含的时钟往往会漂移,因此需要进行定期修正。这些修正方案中的大多数都涉及客户端定期从时间服务器接收 RF 定时信号。然而,基于 RF 的方案容易出现故障或失效,除非在几乎完全无障碍的空间中运行;因此,它仅在有限的环境范围内运行良好。例如,GPS 需要开阔的天空环境。此外,基于地面的 RF 方案的精度限于几微秒。在这项工作中,我们报告了一种更通用和新型的周期性时钟重新同步方案,称为宇宙时间校准器 (CTC),及其开发和测试。CTC 利用宇宙射线μ子信号而不是 RF 信号。μ子是穿透性的,并且不断地沉淀到地球表面上,并且它们倾向于以大约真空中的光速穿过遇到的物质线性传播。因此,μ子本身可以周期性地将精确的定时信息从一个节点传输到另一个节点;因此,Wi-Fi 或蓝牙等节点间通信设备的性能对于在线/离线 WSN 分析是最小化/不必要的。实验结果表明,可以实现 60 Hz 和±4.3 ns(标准差)的重新同步频率和精度。基于 WSN 的航空航天结构健康监测的建模工作表明,CTC 可以为 WSN 在更广泛的环境中开发新的关键和有用的应用做出贡献。