Suppr超能文献

结合领域知识的可解释人工智能在白光内镜下诊断早期胃肿瘤

Explainable artificial intelligence incorporated with domain knowledge diagnosing early gastric neoplasms under white light endoscopy.

作者信息

Dong Zehua, Wang Junxiao, Li Yanxia, Deng Yunchao, Zhou Wei, Zeng Xiaoquan, Gong Dexin, Liu Jun, Pan Jie, Shang Renduo, Xu Youming, Xu Ming, Zhang Lihui, Zhang Mengjiao, Tao Xiao, Zhu Yijie, Du Hongliu, Lu Zihua, Yao Liwen, Wu Lianlian, Yu Honggang

机构信息

Renmin Hospital of Wuhan University, Wuhan, China.

Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.

出版信息

NPJ Digit Med. 2023 Apr 12;6(1):64. doi: 10.1038/s41746-023-00813-y.

Abstract

White light endoscopy is the most pivotal tool for detecting early gastric neoplasms. Previous artificial intelligence (AI) systems were primarily unexplainable, affecting their clinical credibility and acceptability. We aimed to develop an explainable AI named ENDOANGEL-ED (explainable diagnosis) to solve this problem. A total of 4482 images and 296 videos with focal lesions from 3279 patients from eight hospitals were used for training, validating, and testing ENDOANGEL-ED. A traditional sole deep learning (DL) model was trained using the same dataset. The performance of ENDOANGEL-ED and sole DL was evaluated on six levels: internal and external images, internal and external videos, consecutive videos, and man-machine comparison with 77 endoscopists in videos. Furthermore, a multi-reader, multi-case study was conducted to evaluate the ENDOANGEL-ED's effectiveness. A scale was used to compare the overall acceptance of endoscopists to traditional and explainable AI systems. The ENDOANGEL-ED showed high performance in the image and video tests. In man-machine comparison, the accuracy of ENDOANGEL-ED was significantly higher than that of all endoscopists in internal (81.10% vs. 70.61%, p < 0.001) and external videos (88.24% vs. 78.49%, p < 0.001). With ENDOANGEL-ED's assistance, the accuracy of endoscopists significantly improved (70.61% vs. 79.63%, p < 0.001). Compared with the traditional AI, the explainable AI increased the endoscopists' trust and acceptance (4.42 vs. 3.74, p < 0.001; 4.52 vs. 4.00, p < 0.001). In conclusion, we developed a real-time explainable AI that showed high performance, higher clinical credibility, and acceptance than traditional DL models and greatly improved the diagnostic ability of endoscopists.

摘要

白光内镜检查是检测早期胃肿瘤的最关键工具。以往的人工智能(AI)系统大多无法解释,影响了其临床可信度和可接受性。我们旨在开发一种名为ENDOANGEL-ED(可解释诊断)的可解释人工智能来解决这一问题。来自八家医院的3279名患者的共4482张图像和296段有局灶性病变的视频用于训练、验证和测试ENDOANGEL-ED。使用相同的数据集训练了一个传统的单一深度学习(DL)模型。在六个层面评估了ENDOANGEL-ED和单一DL的性能:内部和外部图像、内部和外部视频、连续视频以及与视频中77位内镜医师的人机比较。此外,还进行了一项多读者多病例研究以评估ENDOANGEL-ED的有效性。使用一个量表比较内镜医师对传统和可解释人工智能系统的总体接受度。ENDOANGEL-ED在图像和视频测试中表现出高性能。在人机比较中,ENDOANGEL-ED在内部视频(81.10%对70.61%,p<0.001)和外部视频(88.24%对78.49%,p<0.001)中的准确率显著高于所有内镜医师。在ENDOANGEL-ED的辅助下,内镜医师的准确率显著提高(70.61%对79.63%,p<0.001)。与传统人工智能相比,可解释人工智能提高了内镜医师的信任度和接受度(4.42对3.74,p<0.001;4.52对4.00,p<0.001)。总之,我们开发了一种实时可解释人工智能,它表现出高性能,比传统DL模型具有更高的临床可信度和接受度,并大大提高了内镜医师的诊断能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd9f/10097818/d4954e2c6ec5/41746_2023_813_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验