Suppr超能文献

TCL1A 的异常激活促进克隆性造血中的干细胞扩增。

Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis.

机构信息

Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA.

Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

Nature. 2023 Apr;616(7958):755-763. doi: 10.1038/s41586-023-05806-1. Epub 2023 Apr 12.

Abstract

Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis. These lesions are precursors for blood cancers, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.

摘要

多种驱动基因的突变会增加造血干细胞(HSCs)的适应性,导致克隆性造血。这些病变是血液癌症的前体,但它们的适应性优势的基础在很大程度上仍然未知,部分原因是缺乏大规模的队列,这些队列通过纵向采样评估了克隆扩展率。在这里,为了规避这一限制,我们开发了一种从单次采样数据推断扩展率的方法。我们将这种方法应用于 5071 名具有克隆性造血的人群。全基因组关联研究表明,TCL1A 启动子中的一个常见遗传多态性与克隆性造血的总体扩展率较慢有关,但这种影响因驱动基因而异。携带这种保护性等位基因的人,其 TET2、ASXL1、SF3B1 和 SRSF2 驱动突变克隆的生长速度或患病率明显降低,但在 DNMT3A 驱动突变克隆中未观察到这种影响。TCL1A 在正常或 DNMT3A 突变的 HSCs 中不表达,但 TET2 或 ASXL1 突变的引入导致 TCL1A 蛋白的表达和体外 HSCs 的扩增。保护性等位基因限制了 TCL1A 表达和突变 HSCs 的扩增,实验性敲低 TCL1A 表达也是如此。TCL1A 的强制表达促进了体外人 HSCs 和体内小鼠 HSCs 的扩增。我们的结果表明,克隆性造血中几种常见突变驱动基因的适应性优势可能是由 TCL1A 激活介导的。

相似文献

1
Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis.
Nature. 2023 Apr;616(7958):755-763. doi: 10.1038/s41586-023-05806-1. Epub 2023 Apr 12.
2
Inherited causes of clonal haematopoiesis in 97,691 whole genomes.
Nature. 2020 Oct;586(7831):763-768. doi: 10.1038/s41586-020-2819-2. Epub 2020 Oct 14.
4
Obesity-induced inflammation exacerbates clonal hematopoiesis.
J Clin Invest. 2023 Jun 1;133(11):e163968. doi: 10.1172/JCI163968.
5
A mutant ASXL1-BAP1-EHMT complex contributes to heterochromatin dysfunction in clonal hematopoiesis and chronic monomyelocytic leukemia.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2413302121. doi: 10.1073/pnas.2413302121. Epub 2025 Jan 3.
6
Clonal haematopoiesis to clonal cytopenias: unravelling disease evolution over time.
Lancet Haematol. 2025 Aug;12(8):e650-e661. doi: 10.1016/S2352-3026(25)00137-1. Epub 2025 Jul 17.
8
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
9
Cost-Effective and Scalable Clonal Hematopoiesis Assay Provides Insight into Clonal Dynamics.
J Mol Diagn. 2024 Jul;26(7):563-573. doi: 10.1016/j.jmoldx.2024.03.007. Epub 2024 Apr 6.
10
Clonal hematopoiesis landscape in frequent blood donors.
Blood. 2025 May 22;145(21):2411-2423. doi: 10.1182/blood.2024027999.

引用本文的文献

3
Detecting and quantifying clonal selection in somatic stem cells.
Nat Genet. 2025 Jul 3. doi: 10.1038/s41588-025-02217-y.
4
Single-cell sequencing reveals cellular differences and potential mechanisms in congenital pulmonary airway malformation.
Front Med (Lausanne). 2025 Jun 3;12:1548177. doi: 10.3389/fmed.2025.1548177. eCollection 2025.
5
Mechanism of age-related accumulation of mitochondrial DNA mutations in human blood.
bioRxiv. 2025 May 28:2025.05.25.655566. doi: 10.1101/2025.05.25.655566.
6
The rules of different B cell subtypes in colorectal cancer: friends or foes?
Future Oncol. 2025 Jul;21(16):2101-2112. doi: 10.1080/14796694.2025.2511588. Epub 2025 Jun 9.
7
Contributions of Noncardiac Organ-Heart Immune Crosstalk and Somatic Mosaicism to Heart Failure: Current Knowledge and Perspectives.
Circ Res. 2025 May 23;136(11):1208-1232. doi: 10.1161/CIRCRESAHA.125.325489. Epub 2025 May 22.
9
Microbial metabolite drives ageing-related clonal haematopoiesis via ALPK1.
Nature. 2025 Apr 23. doi: 10.1038/s41586-025-08938-8.
10
Inherited resilience to clonal hematopoiesis by modifying stem cell RNA regulation.
bioRxiv. 2025 Mar 26:2025.03.24.645017. doi: 10.1101/2025.03.24.645017.

本文引用的文献

1
Longitudinal dynamics of clonal hematopoiesis identifies gene-specific fitness effects.
Nat Med. 2022 Jul;28(7):1439-1446. doi: 10.1038/s41591-022-01883-3. Epub 2022 Jul 4.
2
The longitudinal dynamics and natural history of clonal haematopoiesis.
Nature. 2022 Jun;606(7913):335-342. doi: 10.1038/s41586-022-04785-z. Epub 2022 Jun 1.
3
Clonal dynamics of haematopoiesis across the human lifespan.
Nature. 2022 Jun;606(7913):343-350. doi: 10.1038/s41586-022-04786-y. Epub 2022 Jun 1.
4
Longitudinal profiling of clonal hematopoiesis provides insight into clonal dynamics.
Immun Ageing. 2022 May 24;19(1):23. doi: 10.1186/s12979-022-00278-9.
5
Life histories of myeloproliferative neoplasms inferred from phylogenies.
Nature. 2022 Feb;602(7895):162-168. doi: 10.1038/s41586-021-04312-6. Epub 2022 Jan 20.
6
Failure to Detect Mutations in U2AF1 due to Changes in the GRCh38 Reference Sequence.
J Mol Diagn. 2022 Mar;24(3):219-223. doi: 10.1016/j.jmoldx.2021.10.013. Epub 2022 Jan 15.
7
is mutated in clonal hematopoiesis and myelodysplastic syndromes and impacts RNA splicing.
Blood Cancer Discov. 2021 Sep;2(5):500-517. doi: 10.1158/2643-3230.BCD-20-0224. Epub 2021 Jul 14.
9
Clonal expansion in non-cancer tissues.
Nat Rev Cancer. 2021 Apr;21(4):239-256. doi: 10.1038/s41568-021-00335-3. Epub 2021 Feb 24.
10
Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.
Nature. 2021 Feb;590(7845):290-299. doi: 10.1038/s41586-021-03205-y. Epub 2021 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验