Gupta Rahul, Durham Timothy J, Chau Grant, Uddin Md Mesbah, Lu Wenhan, Karczewski Konrad J, Howrigan Daniel, Natarajan Pradeep, Zhou Wei, Neale Benjamin M, Mootha Vamsi K
Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
bioRxiv. 2025 May 28:2025.05.25.655566. doi: 10.1101/2025.05.25.655566.
One of the strongest signatures of aging is an accumulation of mutant mitochondrial DNA (mtDNA) heteroplasmy. Here we investigate the mechanism underlying this phenomenon by calling mtDNA sequence, abundance, and heteroplasmic variation in human blood using whole genome sequences from ~750,000 individuals. Our analyses reveal a simple, two-step mechanism: first, individual cells randomly accumulate low levels of "cryptic" mtDNA mutations; then, when a cell clone proliferates, the cryptic mtDNA variants are carried as passenger mutations and become detectable in whole blood. Four lines of evidence support this model: (1) the mutational spectrum of age-accumulating mtDNA variants is consistent with a well-established model of mtDNA replication errors, (2) these mutations are found primarily at low levels of heteroplasmy and do not show evidence of positive selection, (3) high mtDNA mutation burden tends to co-occur in samples harboring somatic driver mutations for clonal hematopoiesis (CH), and (4) nuclear GWAS reveals that germline variants predisposing to CH (such as those near , , and ) also increase mtDNA mutation burden. We propose that the high copy number and high mutation rate of mtDNA make it a particularly sensitive blood-based marker of CH. Importantly, our work helps to mechanistically unify three prominent signatures of aging: common germline variants in , clonal hematopoiesis, and observed mtDNA mutation accrual.
衰老最显著的特征之一是突变型线粒体DNA(mtDNA)异质性的积累。在此,我们通过调用约750,000个人的全基因组序列中的mtDNA序列、丰度和异质性变异,来研究这一现象背后的机制。我们的分析揭示了一个简单的两步机制:首先,单个细胞随机积累低水平的“隐匿性”mtDNA突变;然后,当一个细胞克隆增殖时,隐匿性mtDNA变异作为乘客突变被携带,并在全血中变得可检测到。四条证据支持这一模型:(1)随年龄积累的mtDNA变异的突变谱与一个成熟的mtDNA复制错误模型一致,(2)这些突变主要在低水平异质性中被发现,且没有显示出正选择的证据,(3)高mtDNA突变负担往往在携带克隆性造血(CH)体细胞驱动突变的样本中同时出现,(4)全基因组关联研究(GWAS)表明,易患CH的种系变异(如靠近 、 和 的那些变异)也会增加mtDNA突变负担。我们提出,mtDNA的高拷贝数和高突变率使其成为CH一个特别敏感的基于血液的标志物。重要的是,我们的工作有助于从机制上统一衰老的三个突出特征: 中的常见种系变异、克隆性造血以及观察到的mtDNA突变积累。