Suppr超能文献

基于机器学习的高通量 SERS 细胞分泌物分类。

Machine Learning-Assisted High-Throughput SERS Classification of Cell Secretomes.

机构信息

CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain.

Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Donostia-San Sebastián, 20014, Spain.

出版信息

Small. 2023 Dec;19(51):e2207658. doi: 10.1002/smll.202207658. Epub 2023 Apr 12.

Abstract

During the response to different stress conditions, damaged cells react in multiple ways, including the release of a diverse cocktail of metabolites. Moreover, secretomes from dying cells can contribute to the effectiveness of anticancer therapies and can be exploited as predictive biomarkers. The nature of the stress and the resulting intracellular responses are key determinants of the secretome composition, but monitoring such processes remains technically arduous. Hence, there is growing interest in developing tools for noninvasive secretome screening. In this regard, it has been previously shown that the relative concentrations of relevant metabolites can be traced by surface-enhanced Raman scattering (SERS), thereby allowing label-free biofluid interrogation. However, conventional SERS approaches are insufficient to tackle the requirements imposed by high-throughput modalities, namely fast data acquisition and automatized analysis. Therefore, machine learning methods were implemented to identify cell secretome variations while extracting standard features for cell death classification. To this end, ad hoc microfluidic chips were devised, to readily conduct SERS measurements through a prototype relying on capillary pumps made of filter paper, which eventually would function as the SERS substrates. The developed strategy may pave the way toward a faster implementation of SERS into cell secretome classification, which can be extended even to laboratories lacking highly specialized facilities.

摘要

在应对不同应激条件时,受损细胞会以多种方式作出反应,包括释放多种代谢物的混合物。此外,死亡细胞的分泌组可以促进癌症治疗的效果,并可以作为预测性生物标志物加以利用。应激的性质和由此产生的细胞内反应是分泌组组成的关键决定因素,但监测这些过程在技术上仍然很困难。因此,人们越来越有兴趣开发用于非侵入性分泌组筛选的工具。在这方面,先前已经表明,可以通过表面增强拉曼散射(SERS)来追踪相关代谢物的相对浓度,从而可以进行无标记的生物流体检测。然而,传统的 SERS 方法不足以满足高通量模式所要求的条件,即快速数据采集和自动化分析。因此,实施了机器学习方法来识别细胞分泌组的变化,同时提取细胞死亡分类的标准特征。为此,专门设计了微流控芯片,以便通过依赖滤纸制成的毛细管泵的原型进行 SERS 测量,最终滤纸将用作 SERS 基底。所开发的策略可能为将 SERS 更快地应用于细胞分泌组分类铺平道路,甚至可以将其扩展到缺乏高度专业化设备的实验室。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验