Kažukauskas Evaldas, Butkus Simas, Jukna Vytautas, Paipulas Domas, Sirutkaitis Valdas
Laser Research Center, Faculty of Physics, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania.
Materials (Basel). 2023 Mar 30;16(7):2788. doi: 10.3390/ma16072788.
Femtosecond laser-assisted material surface modification is a rapidly growing field with numerous applications, including tribology, micromechanics, optofluidics, and medical implant treatment. For many of these applications, precise control of surface roughness after laser treatment is crucial, as it directly affects the final properties of the work surface. However, achieving low mean surface roughness values (<100 nm) is challenging due to the fundamental principles of laser light-matter interactions. The complex physical processes that occur during laser material interactions make it difficult to achieve the desired surface roughness, and only advanced scanning methods can potentially solve this issue. In our study, we analyzed laser scanning algorithms to determine the optimal method for producing surfaces with minimal roughness. We investigated how scanning parameters such as the overlap of modifications, the amount of successive line shift, and laser-scanner synchronization impact surface roughness. Using a numerical model, we obtained results that showed good agreement with experimentally acquired data. Our detailed theoretical and experimental analysis of different scanning methods can provide valuable information for the future optimization of minimal-roughness micromachining.
飞秒激光辅助材料表面改性是一个快速发展的领域,有众多应用,包括摩擦学、微机械学、光流体学和医疗植入物治疗。对于其中许多应用而言,激光处理后精确控制表面粗糙度至关重要,因为它直接影响工作表面的最终性能。然而,由于激光与物质相互作用的基本原理,实现低平均表面粗糙度值(<100纳米)具有挑战性。激光与材料相互作用过程中发生的复杂物理过程使得难以实现所需的表面粗糙度,只有先进的扫描方法有可能解决这个问题。在我们的研究中,我们分析了激光扫描算法,以确定产生粗糙度最小的表面的最佳方法。我们研究了诸如改性重叠、连续线位移量和激光扫描仪同步等扫描参数如何影响表面粗糙度。使用数值模型,我们获得的结果与实验数据显示出良好的一致性。我们对不同扫描方法进行的详细理论和实验分析可为未来最小粗糙度微加工的优化提供有价值的信息。