Suppr超能文献

基于特征增强隐式神经表示的连续遥感图像超分辨率

SR-FEINR: Continuous Remote Sensing Image Super-Resolution Using Feature-Enhanced Implicit Neural Representation.

机构信息

School of Mathematics and Science, Dalian University of Technology, Dalian 116024, China.

Department of Basic Sciences, Shanxi Agricultural University, Jinzhong 030801, China.

出版信息

Sensors (Basel). 2023 Mar 29;23(7):3573. doi: 10.3390/s23073573.

Abstract

Remote sensing images often have limited resolution, which can hinder their effectiveness in various applications. Super-resolution techniques can enhance the resolution of remote sensing images, and arbitrary resolution super-resolution techniques provide additional flexibility in choosing appropriate image resolutions for different tasks. However, for subsequent processing, such as detection and classification, the resolution of the input image may vary greatly for different methods. In this paper, we propose a method for continuous remote sensing image super-resolution using feature-enhanced implicit neural representation (SR-FEINR). Continuous remote sensing image super-resolution means users can scale a low-resolution image into an image with arbitrary resolution. Our algorithm is composed of three main components: a low-resolution image feature extraction module, a positional encoding module, and a feature-enhanced multi-layer perceptron module. We are the first to apply implicit neural representation in a continuous remote sensing image super-resolution task. Through extensive experiments on two popular remote sensing image datasets, we have shown that our SR-FEINR outperforms the state-of-the-art algorithms in terms of accuracy. Our algorithm showed an average improvement of 0.05 dB over the existing method on ×30 across three datasets.

摘要

遥感图像的分辨率通常有限,这可能会影响它们在各种应用中的效果。超分辨率技术可以提高遥感图像的分辨率,而任意分辨率超分辨率技术在为不同任务选择合适的图像分辨率方面提供了额外的灵活性。然而,对于后续处理,例如检测和分类,不同方法的输入图像分辨率可能会有很大差异。在本文中,我们提出了一种使用特征增强隐式神经表示(SR-FEINR)的连续遥感图像超分辨率方法。连续遥感图像超分辨率意味着用户可以将低分辨率图像缩放到任意分辨率的图像。我们的算法由三个主要部分组成:低分辨率图像特征提取模块、位置编码模块和特征增强多层感知机模块。我们是第一个将隐式神经表示应用于连续遥感图像超分辨率任务的。通过在两个流行的遥感图像数据集上进行广泛的实验,我们已经证明我们的 SR-FEINR 在准确性方面优于最先进的算法。在三个数据集上,我们的算法在×30 上的平均提高了 0.05dB。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验