College of Geophysics, Chengdu University of Technology, Chengdu, Sichuan, China.
PLoS One. 2022 Oct 26;17(10):e0276648. doi: 10.1371/journal.pone.0276648. eCollection 2022.
With the development of convolutional neural networks, impressive success has been achieved in remote sensing image super-resolution. However, the performance of super-resolution reconstruction is unsatisfactory due to the lack of details in remote sensing images when compared to natural images. Therefore, this paper presents a novel multiscale convolutional sparse coding network (MCSCN) to carry out the remote sensing images SR reconstruction with rich details. The MCSCN, which consists of a multiscale convolutional sparse coding module (MCSCM) with dictionary convolution units, can improve the extraction of high frequency features. We can obtain more plentiful feature information by combining multiple sizes of sparse features. Finally, a layer based on sub-pixel convolution that combines global and local features takes as the reconstruction block. The experimental results show that the MCSCN gains an advantage over several existing state-of-the-art methods in terms of peak signal-to-noise ratio and structural similarity.
随着卷积神经网络的发展,在遥感图像超分辨率方面取得了令人瞩目的成就。然而,与自然图像相比,遥感图像缺乏细节,这导致超分辨率重建的性能不尽如人意。因此,本文提出了一种新的多尺度卷积稀疏编码网络(MCSCN),以实现具有丰富细节的遥感图像 SR 重建。该 MCSCN 由一个具有字典卷积单元的多尺度卷积稀疏编码模块(MCSCM)组成,可以提高高频特征的提取能力。通过结合多种大小的稀疏特征,我们可以获得更丰富的特征信息。最后,一个基于子像素卷积的结合全局和局部特征的层作为重建块。实验结果表明,MCSCN 在峰值信噪比和结构相似性方面优于几种现有的最先进方法。