School of Information and Communication Engineering, Hainan University, Haikou 570228, China.
School of Applied Science and Technology, Hainan University, Haikou 570228, China.
Sensors (Basel). 2023 Apr 3;23(7):3693. doi: 10.3390/s23073693.
To date, general-purpose object-detection methods have achieved a great deal. However, challenges such as degraded image quality, complex backgrounds, and the detection of marine organisms at different scales arise when identifying underwater organisms. To solve such problems and further improve the accuracy of relevant models, this study proposes a marine biological object-detection architecture based on an improved YOLOv5 framework. First, the backbone framework of Real-Time Models for object Detection (RTMDet) is introduced. The core module, Cross-Stage Partial Layer (CSPLayer), includes a large convolution kernel, which allows the detection network to precisely capture contextual information more comprehensively. Furthermore, a common convolution layer is added to the stem layer, to extract more valuable information from the images efficiently. Then, the BoT3 module with the multi-head self-attention (MHSA) mechanism is added into the neck module of YOLOv5, such that the detection network has a better effect in scenes with dense targets and the detection accuracy is further improved. The introduction of the BoT3 module represents a key innovation of this paper. Finally, union dataset augmentation (UDA) is performed on the training set using the Minimal Color Loss and Locally Adaptive Contrast Enhancement (MLLE) image augmentation method, and the result is used as the input to the improved YOLOv5 framework. Experiments on the underwater datasets URPC2019 and URPC2020 show that the proposed framework not only alleviates the interference of underwater image degradation, but also makes the mAP@0.5 reach 79.8% and 79.4% and improves the mAP@0.5 by 3.8% and 1.1%, respectively, when compared with the original YOLOv8 on URPC2019 and URPC2020, demonstrating that the proposed framework presents superior performance for the high-precision detection of marine organisms.
迄今为止,通用目标检测方法已经取得了很大的成就。然而,当识别水下生物时,会出现图像质量下降、复杂背景和不同尺度的海洋生物检测等挑战。为了解决这些问题并进一步提高相关模型的准确性,本研究提出了一种基于改进 YOLOv5 框架的海洋生物目标检测架构。首先,引入实时模型对象检测 (RTMDet) 的骨干框架。核心模块 Cross-Stage Partial Layer (CSPLayer) 包括一个大卷积核,使检测网络能够更全面、更精确地捕捉上下文信息。此外,在主干层中添加了一个普通卷积层,以便从图像中高效地提取更有价值的信息。然后,在 YOLOv5 的颈部模块中添加具有多头自注意力 (MHSA) 机制的 BoT3 模块,使检测网络在目标密集的场景中具有更好的效果,进一步提高检测精度。BoT3 模块的引入是本文的一个关键创新。最后,使用最小颜色损失和局部自适应对比度增强 (MLLE) 图像增强方法对训练集进行联合数据集增强 (UDA),并将结果作为改进的 YOLOv5 框架的输入。在 URPC2019 和 URPC2020 水下数据集上的实验表明,所提出的框架不仅减轻了水下图像退化的干扰,而且使 mAP@0.5 分别达到 79.8%和 79.4%,与原始 YOLOv8 相比,URPC2019 和 URPC2020 分别提高了 3.8%和 1.1%,表明所提出的框架在海洋生物的高精度检测方面表现出优异的性能。
Sensors (Basel). 2023-4-3
Sensors (Basel). 2023-3-31
Sensors (Basel). 2023-2-25
PLoS One. 2025-5-8
Sci Rep. 2024-9-28
Biomimetics (Basel). 2024-9-18
Sensors (Basel). 2023-3-23
Nat Ecol Evol. 2023-4
IEEE Trans Image Process. 2022-6-3
Eur J Nucl Med Mol Imaging. 2022-1
IEEE Trans Image Process. 2017-2-2
IEEE Trans Pattern Anal Mach Intell. 2010-9