文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种改进的基于 YOLOv5 的水下目标检测框架。

An Improved YOLOv5-Based Underwater Object-Detection Framework.

机构信息

School of Information and Communication Engineering, Hainan University, Haikou 570228, China.

School of Applied Science and Technology, Hainan University, Haikou 570228, China.

出版信息

Sensors (Basel). 2023 Apr 3;23(7):3693. doi: 10.3390/s23073693.


DOI:10.3390/s23073693
PMID:37050753
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10099368/
Abstract

To date, general-purpose object-detection methods have achieved a great deal. However, challenges such as degraded image quality, complex backgrounds, and the detection of marine organisms at different scales arise when identifying underwater organisms. To solve such problems and further improve the accuracy of relevant models, this study proposes a marine biological object-detection architecture based on an improved YOLOv5 framework. First, the backbone framework of Real-Time Models for object Detection (RTMDet) is introduced. The core module, Cross-Stage Partial Layer (CSPLayer), includes a large convolution kernel, which allows the detection network to precisely capture contextual information more comprehensively. Furthermore, a common convolution layer is added to the stem layer, to extract more valuable information from the images efficiently. Then, the BoT3 module with the multi-head self-attention (MHSA) mechanism is added into the neck module of YOLOv5, such that the detection network has a better effect in scenes with dense targets and the detection accuracy is further improved. The introduction of the BoT3 module represents a key innovation of this paper. Finally, union dataset augmentation (UDA) is performed on the training set using the Minimal Color Loss and Locally Adaptive Contrast Enhancement (MLLE) image augmentation method, and the result is used as the input to the improved YOLOv5 framework. Experiments on the underwater datasets URPC2019 and URPC2020 show that the proposed framework not only alleviates the interference of underwater image degradation, but also makes the mAP@0.5 reach 79.8% and 79.4% and improves the mAP@0.5 by 3.8% and 1.1%, respectively, when compared with the original YOLOv8 on URPC2019 and URPC2020, demonstrating that the proposed framework presents superior performance for the high-precision detection of marine organisms.

摘要

迄今为止,通用目标检测方法已经取得了很大的成就。然而,当识别水下生物时,会出现图像质量下降、复杂背景和不同尺度的海洋生物检测等挑战。为了解决这些问题并进一步提高相关模型的准确性,本研究提出了一种基于改进 YOLOv5 框架的海洋生物目标检测架构。首先,引入实时模型对象检测 (RTMDet) 的骨干框架。核心模块 Cross-Stage Partial Layer (CSPLayer) 包括一个大卷积核,使检测网络能够更全面、更精确地捕捉上下文信息。此外,在主干层中添加了一个普通卷积层,以便从图像中高效地提取更有价值的信息。然后,在 YOLOv5 的颈部模块中添加具有多头自注意力 (MHSA) 机制的 BoT3 模块,使检测网络在目标密集的场景中具有更好的效果,进一步提高检测精度。BoT3 模块的引入是本文的一个关键创新。最后,使用最小颜色损失和局部自适应对比度增强 (MLLE) 图像增强方法对训练集进行联合数据集增强 (UDA),并将结果作为改进的 YOLOv5 框架的输入。在 URPC2019 和 URPC2020 水下数据集上的实验表明,所提出的框架不仅减轻了水下图像退化的干扰,而且使 mAP@0.5 分别达到 79.8%和 79.4%,与原始 YOLOv8 相比,URPC2019 和 URPC2020 分别提高了 3.8%和 1.1%,表明所提出的框架在海洋生物的高精度检测方面表现出优异的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/4b638d93aa95/sensors-23-03693-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/0bc1b2791e52/sensors-23-03693-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/69f5f0b871a1/sensors-23-03693-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/cf527bfe9f6c/sensors-23-03693-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/e82377d0781e/sensors-23-03693-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/969176824f12/sensors-23-03693-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/afc739e41758/sensors-23-03693-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/a9f96472449a/sensors-23-03693-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/1bb5f411a003/sensors-23-03693-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/457adbde3bfa/sensors-23-03693-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/e5f0f5279719/sensors-23-03693-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/d82d32189dcb/sensors-23-03693-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/b4bc815406b4/sensors-23-03693-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/4f93d2f111b5/sensors-23-03693-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/237f2172a5e3/sensors-23-03693-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/64e411a30d97/sensors-23-03693-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/9cb1b1978284/sensors-23-03693-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/587b666c20f3/sensors-23-03693-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/2d5ba8fe1499/sensors-23-03693-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/75107bf9d0c5/sensors-23-03693-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/4b638d93aa95/sensors-23-03693-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/0bc1b2791e52/sensors-23-03693-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/69f5f0b871a1/sensors-23-03693-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/cf527bfe9f6c/sensors-23-03693-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/e82377d0781e/sensors-23-03693-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/969176824f12/sensors-23-03693-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/afc739e41758/sensors-23-03693-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/a9f96472449a/sensors-23-03693-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/1bb5f411a003/sensors-23-03693-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/457adbde3bfa/sensors-23-03693-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/e5f0f5279719/sensors-23-03693-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/d82d32189dcb/sensors-23-03693-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/b4bc815406b4/sensors-23-03693-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/4f93d2f111b5/sensors-23-03693-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/237f2172a5e3/sensors-23-03693-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/64e411a30d97/sensors-23-03693-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/9cb1b1978284/sensors-23-03693-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/587b666c20f3/sensors-23-03693-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/2d5ba8fe1499/sensors-23-03693-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/75107bf9d0c5/sensors-23-03693-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8d/10099368/4b638d93aa95/sensors-23-03693-g020.jpg

相似文献

[1]
An Improved YOLOv5-Based Underwater Object-Detection Framework.

Sensors (Basel). 2023-4-3

[2]
YOLOv8-MU: An Improved YOLOv8 Underwater Detector Based on a Large Kernel Block and a Multi-Branch Reparameterization Module.

Sensors (Basel). 2024-5-1

[3]
YOLOv5_mamba: unmanned aerial vehicle object detection based on bidirectional dense feedback network and adaptive gate feature fusion.

Sci Rep. 2024-9-27

[4]
A Marine Organism Detection Framework Based on the Joint Optimization of Image Enhancement and Object Detection.

Sensors (Basel). 2021-10-29

[5]
Swin-Transformer-Based YOLOv5 for Small-Object Detection in Remote Sensing Images.

Sensors (Basel). 2023-3-31

[6]
An Improved YOLOv5 Model: Application to Mixed Impurities Detection for Walnut Kernels.

Foods. 2023-2-1

[7]
CCW-YOLOv5: A forward-looking sonar target method based on coordinate convolution and modified boundary frame loss.

PLoS One. 2024

[8]
Underwater Object Detection Using TC-YOLO with Attention Mechanisms.

Sensors (Basel). 2023-2-25

[9]
ASG-YOLOv5: Improved YOLOv5 unmanned aerial vehicle remote sensing aerial images scenario for small object detection based on attention and spatial gating.

PLoS One. 2024

[10]
Real-time detection of particleboard surface defects based on improved YOLOV5 target detection.

Sci Rep. 2021-11-5

引用本文的文献

[1]
MADNet: Marine Animal Detection Network using the YOLO platform.

PLoS One. 2025-5-8

[2]
An android-smartphone application for rice panicle detection and rice growth stage recognition using a lightweight YOLO network.

Front Plant Sci. 2025-4-16

[3]
Research on mechanical automatic food packaging defect detection model based on improved YOLOv5 algorithm.

PLoS One. 2025-4-24

[4]
An integration of ensemble deep learning with hybrid optimization approaches for effective underwater object detection and classification model.

Sci Rep. 2025-3-29

[5]
Automatic plant phenotyping analysis of Melon (Cucumis melo L.) germplasm resources using deep learning methods and computer vision.

Plant Methods. 2024-10-30

[6]
A Lightweight underwater detector enhanced by Attention mechanism, GSConv and WIoU on YOLOv8.

Sci Rep. 2024-10-28

[7]
UICE-MIRNet guided image enhancement for underwater object detection.

Sci Rep. 2024-9-28

[8]
Deep Learning-Based Biomimetic Identification Method for Mask Wearing Standardization.

Biomimetics (Basel). 2024-9-18

[9]
Development of an AI-based image/ultrasonic convergence camera system for accurate gas leak detection in petrochemical plants.

Heliyon. 2024-3-30

[10]
YOLOv5-KCB: A New Method for Individual Pig Detection Using Optimized K-Means, CA Attention Mechanism and a Bi-Directional Feature Pyramid Network.

Sensors (Basel). 2023-5-31

本文引用的文献

[1]
YOLOv5s-CA: A Modified YOLOv5s Network with Coordinate Attention for Underwater Target Detection.

Sensors (Basel). 2023-3-23

[2]
Making marine biotechnology work for people and nature.

Nat Ecol Evol. 2023-4

[3]
Spectroscopy and chromaticity characterization of yellow to light-blue iron-containing beryl.

Sci Rep. 2022-6-24

[4]
Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement.

IEEE Trans Image Process. 2022-6-3

[5]
A Marine Organism Detection Framework Based on the Joint Optimization of Image Enhancement and Object Detection.

Sensors (Basel). 2021-10-29

[6]
Image enhancement of whole-body oncology [F]-FDG PET scans using deep neural networks to reduce noise.

Eur J Nucl Med Mol Imaging. 2022-1

[7]
Underwater Image Restoration Based on Image Blurriness and Light Absorption.

IEEE Trans Image Process. 2017-2-2

[8]
Object detection with discriminatively trained part-based models.

IEEE Trans Pattern Anal Mach Intell. 2010-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索