Suppr超能文献

通过精细调控碳通量和辅因子再生工程,在大肠杆菌中从 D-葡萄糖不可逆地生物合成 D-阿洛酮糖。

Irreversible biosynthesis of D-allulose from D-glucose in Escherichia coli through fine-tuning of carbon flux and cofactor regeneration engineering.

机构信息

College of Light Industry and Food Engineering, Guangxi University, Nanning, China.

Guangxi South Subtropical Agricultural Sciences Research Institute, Longzhou, China.

出版信息

J Sci Food Agric. 2023 Aug 30;103(11):5481-5489. doi: 10.1002/jsfa.12623. Epub 2023 Apr 28.

Abstract

BACKGROUND

As a rare hexose with low calories and various physiological functions, d-allulose has drawn increasing attention. The current industrial production of d-allulose from d-fructose or d-glucose is achieved via epimerization based on the Izumoring strategy; however, the inherent reaction equilibrium during reversible reaction limits its high conversion yield. Although the conversion of d-fructose to d-allulose could be enhanced via phosphorylation-dephosphorylation mediated by metabolic engineering, biomass reduction and byproduct accumulation remain a largely unresolved issue.

RESULTS

After modifying the glycolytic pathway of Escherichia coli and optimizing the whole-cell reaction condition, the engineered strain produced 7.57 ± 0.61 g L d-allulose from 30 g L d-glucose after 24 h of catalysis. By developing an ATP regeneration system for enhanced substrate phosphorylation, the cell growth inhibition was alleviated and d-allulose production increased by 55.3% to 11.76 ± 0.58 g L (0.53 g g ). Fine-tuning of carbon flux caused a 48% reduction in d-fructose accumulation to 1.47 ± 0.15 g L . After implementing fed-batch co-substrate strategy, the d-allulose titer reached 15.80 ± 0.31 g L (0.62 g g ) with a d-glucose conversion rate of 84.8%.

CONCLUSION

The present study reports a novel strategy for high-yield d-allulose production from low-cost substrate. © 2023 Society of Chemical Industry.

摘要

背景

作为一种低热量、具有多种生理功能的稀有己酮糖,d-阿洛酮糖引起了越来越多的关注。目前,工业上通过 Izumoring 策略,以 d-果糖或 d-葡萄糖为原料,经差向异构化反应生产 d-阿洛酮糖;但由于该反应为可逆反应,固有反应平衡限制了其高转化率。尽管通过代谢工程介导的磷酸化-去磷酸化作用可以提高 d-果糖转化为 d-阿洛酮糖的效率,但生物量减少和副产物积累仍然是一个亟待解决的问题。

结果

在改造大肠杆菌糖酵解途径并优化全细胞反应条件后,工程菌在 24 h 内以 30 g/L d-葡萄糖为底物生产了 7.57±0.61 g/L 的 d-阿洛酮糖。通过构建 ATP 再生系统增强底物磷酸化作用,缓解了细胞生长抑制,使 d-阿洛酮糖产量提高了 55.3%,达到 11.76±0.58 g/L(0.53 g/g)。精细调控碳通量使 d-果糖积累降低 48%,降至 1.47±0.15 g/L。实施补料分批共底物策略后,d-阿洛酮糖的产量达到 15.80±0.31 g/L(0.62 g/g),d-葡萄糖转化率为 84.8%。

结论

本研究报道了一种从低成本底物高效生产 d-阿洛酮糖的新策略。 © 2023 化学工业协会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验