Suppr超能文献

膀胱癌中的血管生成概述。

An Overview of Angiogenesis in Bladder Cancer.

机构信息

Department of Natural Science, Middlesex University, London, UK.

Department of Histopathology, Tanta University, Tanta, Egypt.

出版信息

Curr Oncol Rep. 2023 Jul;25(7):709-728. doi: 10.1007/s11912-023-01421-5. Epub 2023 Apr 13.

Abstract

PURPOSE OF THE REVIEW

Angiogenesis plays a key role in bladder cancer (BC) pathogenesis. In the last two decades, an increasing number of publications depicting a multitude of novel angiogenic molecules and pathways have emerged. The growing complexity necessitates an evaluation of the breadth of current knowledge to highlight key findings and guide future research.

RECENT FINDINGS

Angiogenesis is a dynamic biologic process that is inherently difficult to assess. Clinical assessment of angiogenesis in BCs is advancing with the integration of image analysis systems and dynamic contrast-enhanced and magnetic resonance imaging (DCE-MRI). Tumour-associated macrophages (TAMs) significantly influence the angiogenic process, and further research is needed to assess their potential as therapeutic targets. A rapidly growing list of non-coding RNAs affect angiogenesis in BCs, partly through modulation of vascular endothelial growth factor (VEGF) activity. Vascular mimicry (VM) has been repeatedly associated with increased tumour aggressiveness in BCs. Standardised assays are needed for appropriate identification and quantification of VM channels. This article demonstrates the dynamic and complex nature of the angiogenic process and asserts the need for further studies to deepen our understanding.

摘要

目的综述

血管生成在膀胱癌(BC)发病机制中起关键作用。在过去的二十年中,大量描述多种新的血管生成分子和途径的出版物不断涌现。不断增加的复杂性需要评估当前知识的广度,以突出关键发现并指导未来的研究。

最新发现

血管生成是一个动态的生物学过程,本质上难以评估。BC 中血管生成的临床评估随着图像分析系统以及动态对比增强和磁共振成像(DCE-MRI)的整合而不断发展。肿瘤相关巨噬细胞(TAMs)显著影响血管生成过程,需要进一步研究以评估它们作为治疗靶点的潜力。大量非编码 RNA 影响 BC 中的血管生成,部分通过调节血管内皮生长因子(VEGF)的活性。血管模拟(VM)在 BC 中与肿瘤侵袭性增加反复相关。需要标准化的检测方法来适当识别和定量 VM 通道。本文展示了血管生成过程的动态和复杂性质,并强调需要进一步研究以加深我们的理解。

相似文献

1
An Overview of Angiogenesis in Bladder Cancer.
Curr Oncol Rep. 2023 Jul;25(7):709-728. doi: 10.1007/s11912-023-01421-5. Epub 2023 Apr 13.
2
Dynamic Contrast-Enhanced Magnetic Resonance Imaging as a Diagnostic Tool in the Assessment of Tumour Angiogenesis in Urinary Bladder Cancer.
Can Assoc Radiol J. 2019 Aug;70(3):254-263. doi: 10.1016/j.carj.2018.11.004. Epub 2019 Mar 25.
5
The role of hypoxia and p53 in the regulation of angiogenesis in bladder cancer.
J Urol. 2001 Jun;165(6 Pt 1):2075-81. doi: 10.1097/00005392-200106000-00073.
6
Tumour-associated macrophages correlate with microvascular bed extension in colorectal cancer patients.
J Cell Mol Med. 2016 Jul;20(7):1373-80. doi: 10.1111/jcmm.12826. Epub 2016 Apr 22.
8
Vascular Endothelial Growth Factor (VEGF) Signaling in Tumour Vascularization: Potential and Challenges.
Curr Vasc Pharmacol. 2017;15(4):339-351. doi: 10.2174/1570161115666170105124038.
9
Heme oxygenase-1 promotes angiogenesis in urothelial carcinoma of the urinary bladder.
Oncol Rep. 2011 Mar;25(3):653-60. doi: 10.3892/or.2010.1125. Epub 2010 Dec 27.

引用本文的文献

1
The role of angiogenin in bladder cancer: where are we in 2025?
Int Urol Nephrol. 2025 Apr 22. doi: 10.1007/s11255-025-04517-y.
2
Review of recent molecular pathology of bladder urothelial carcinoma.
Discov Oncol. 2025 Mar 29;16(1):424. doi: 10.1007/s12672-025-02128-8.
3
Exosomes containing miR-152-3p targeting FGFR3 mediate SLC7A7-induced angiogenesis in bladder cancer.
NPJ Precis Oncol. 2025 Mar 12;9(1):71. doi: 10.1038/s41698-025-00859-z.
4
Antiangiogenic therapy combined with immune checkpoint blockade in urothelial cancer: Systematic review and meta-analysis.
Bladder Cancer. 2024 Dec 20;10(4):300-312. doi: 10.1177/23523735241296763. eCollection 2024 Dec.
6
Vascular endothelial cell injury: causes, molecular mechanisms, and treatments.
MedComm (2020). 2025 Jan 16;6(2):e70057. doi: 10.1002/mco2.70057. eCollection 2025 Feb.
9
Molecular mechanism of anticancer effect of heat shock protein 90 inhibitor BIIB021 in human bladder cancer cell line.
Naunyn Schmiedebergs Arch Pharmacol. 2024 Jul;397(7):5167-5177. doi: 10.1007/s00210-024-02950-x. Epub 2024 Jan 19.
10
Tumor-derived exosomal miR-1247-3p promotes angiogenesis in bladder cancer by targeting FOXO1.
Cancer Biol Ther. 2024 Dec 31;25(1):2290033. doi: 10.1080/15384047.2023.2290033. Epub 2023 Dec 10.

本文引用的文献

2
Hypoxia-Inducible Factor-2-Altered Urothelial Carcinoma: Clinical and Genomic Features.
Curr Oncol. 2022 Nov 14;29(11):8638-8649. doi: 10.3390/curroncol29110681.
3
The oncogenic role of TFAP2A in bladder urothelial carcinoma via a novel long noncoding RNA TPRG1-AS1/DNMT3A/CRTAC1 axis.
Cell Signal. 2023 Feb;102:110527. doi: 10.1016/j.cellsig.2022.110527. Epub 2022 Nov 21.
4
Urinary miRNAs as a Diagnostic Tool for Bladder Cancer: A Systematic Review.
Biomedicines. 2022 Oct 31;10(11):2766. doi: 10.3390/biomedicines10112766.
5
Tumor-derived exosomal non-coding RNAs as diagnostic biomarkers in cancer.
Cell Mol Life Sci. 2022 Oct 29;79(11):572. doi: 10.1007/s00018-022-04552-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验